1.2.4 Общая характеристика и принципы функционирования
Так же и в стандарте CDMA передаваемая в эфире информация от базовой станции к мобильной или наоборот попадает ко всем абонентам сети, но каждый абонент понимает только ту информацию, которая предназначена для него, т.е. русский понимает только русского, немец только немца, а остальная информация отсеивается. Язык общения в данный момент является кодом. В CDMA это организовано за счет применения кодирования передаваемых данных, если точнее, то за это отвечает блок умножения на функцию Уолша [4].
В отличие от стандарта GSM, который использует TDMA (Time Division Multiple Access – многостанционный доступ с кодовым разделением канала, т.е. несколько абонентом могут разговаривать на одной и той же частоте, как и в CDMA, но в отличие от CDMA, в разное время), стандарт IS-95 диапазон частот использует более экономично.
CDMA называют широкополосной системой и сигналы идущие в эфире шумоподобными. Широкополосная – потому, что занимает широкую полосу частот. Шумоподобные сигналы – потому, что когда в эфире на одной частоте, в одно и то же время работают несколько абонентов, сигналы накладываются друг на друга (можно представить шум в ресторане, когда все одновременно говорят). Помехоустойчивая – потому, что при возникновении в широкой полосе частот (1,23 МГц) сигнала-помехи, узкого диапазона (<150 кГц), сигнал примется почти неискаженный. За счет помехоустойчивого кодирования потерянные данные система восстановит. На рисунке 1.2 показан полезный сигнал и помеха (СЗС – селективная помеха) [4].
А в стандарте GSM такое не получится. Из-за того, что GSM изначально сам узкополосный. Ширина полосы, которая используется, равна 200 кГц.
Рисунок 1.2 – Полезный сигнал и помеха СDMA
Система CDMA фирмы Qualcom рассчитана на работу в диапазоне частот 800 МГц. Система CDMA построена по методу прямого расширения спектра частот на основе использования 64 видов последовательностей, сформированных по закону функций Уолша. Для передачи речевых сообщений выбрано речепреобразующее устройство с алгоритмом CELP со скоростью преобразования 8000 бит/с (9600 бит/с в канале). Возможны режимы работы на скоростях 4800, 2400, 1200 бит/с.
В каналах системы CDMA применяется сверточное кодирование со скоростью (в каналах от базовой станции) и 1/3 (в каналах от подвижной станции), декодер Витерби с мягким решением, перемежение передаваемых сообщений. Общая полоса канала связи составляет 1,25 МГц.
В стандарте используется раздельная обработка отраженных сигналов, приходящих с разными задержками, и последующее их весовое сложение, что значительно снижает отрицательное влияние эффекта многолучевости. При раздельной обработке лучей в каждом канале приема на базовой используется 4 параллельно работающих коррелятора, а на подвижной станции 3 коррелятора. Наличие параллельно работающих корреляторов позволяет осуществить мягкий режим «эстафетной передачи» при переходе из соты в соту [6–8].
Основные характеристики стандарта приведены в таблице 1.2.
Таблица 1.2 – Основные характеристики стандарта
Характеристика | Значение |
Диапазон частот передачи MS | 824,040–848,860 МГц |
Диапазон частот передачи BTS | 869,040–893,970 МГц |
Относительная нестабильность несущей частоты BTS | ± 5*10-8 |
Относительная нестабильность несущей частоты MS | ± 2,5*10-6 |
Вид модуляции несущей частоты | QPSK(BTS), O-QPSK(MS) |
Ширина спектра излучаемого cигнала:– по уровню минус 3 дБ- по уровню минус 40 дБ | 1,25МГц;1,50 МГц |
Тактовая частота ПСП М-функции | 1,2288 МГц |
Количество каналов BTS на 1 несущей частоте | 1 пилот-канал;1 канал синхронизации;7 каналов персонального вызова;55 каналов связи |
Количество каналов MS | 1 канал доступа;1 канал связи |
Скорость передачи данных:– в канале синхронизации– в канале перс. вызова и доступа– в каналах связи | 1200 бит/с;9600, 4800 бит/с;9600, 4800, 2400, 1200 бит/с |
Кодирование в каналах передачи BTS | Сверточный код R=1/2, К=9 |
Кодирование в каналах передачи MS | Сверточный код R=1/3, K=9 |
Требуемое для приема отношение энергии битаинформации | 6–7 дБ |
Максимальная эффективная излучаемая мощность BTS | 50 Вт |
Максимально эффективная излучаемая мощность MS | 6,3–10 Вт |
Мягкий режим «эстафетной передачи» происходит за счет управления подвижной станцией двумя или более базовыми станциями. Транскодер, входящий в состав основного оборудования, проводит оценку качества приема сигналов от двух базовых станций последовательно кадр за кадром. Процесс выбора лучшего кадра приводит к тому, что результирующий сигнал может быть сформирован в процессе непрерывной коммутации и последующего «склеивания» кадров, принимаемых разными базовыми станциями, участвующими в «эстафетной передаче».
Протоколы установления связи в CDMA, так же как в стандартах AMPS основаны на использовании логических каналов.
1.3 Обзор стандартов мобильных сетей третьего поколения (3G)
1.3.1 Основные возможности мобильных сетей третьего поколения
Термин 3G, принятый мировым сообществом для обобщенного обозначения следующего поколения мобильных сетей и их возможностей. Таких как, повышенная ёмкость и функциональность, обеспечивающая новейшие услуги и приложения, включающие мультимедиа. Сети третьего поколения (3G) отличаются от сетей второго поколения (2G), таких как например GSM и переходного поколения (2.5G), таких как например GPRS – гораздо большей скоростью передачи данных, а также более широким набором и высоким качеством предоставляемых услуг.
1.3.2 Семейство систем IMT-2000
(International Mobile Telecommunications – 2000) это рекомендации, разработанные Международным Институтом Электросвязи (ITU), касающиеся вопросов использования частотного спектра и технических особенностей для всего семейства стандартов третьего поколения. Рекомендации описывают пути эволюции существующих в мире стандартов второго поколения в стандарты третьего поколения.
Согласно рекомендациям ITU определено пять стандартов мобильной связи третьего поколения. Вместе эти пять стандартов образуют IFS (IMT-2000 Family of Systems) – семейство систем IMT-2000 (рисунок 1.3) [8].
Рисунок 1.3 – Семейство систем IMT-2000
С учётом специфики существующих в мире на сегодняшний день сетей сотовой связи были разработаны варианты миграции этих сетей в сети третьего поколения, показанные на рисунке 1.4.
Рисунок 1.4 – Миграция стандартов сотовой связи в сети третьего поколения
IMT-2000 обеспечивает [15–8]:
- высокую скорость передачи данных как внутри помещений, так и на открытой местности;
- симметричную и асимметричную передачу данных;
- поддержку канальной и пакетной коммутации для обеспечения таких сервисов, как Internet Protocol (IP) и Real Time Video;
- высокое качество голоса, не уступающее качеству голоса при передаче по проводной линии;
- большую компактность спектра и более эффективное его использование;
- возможность глобального роуминга.
Программа IMT-2000 базируется на ряде признаков, определяющих принципы построения систем третьего поколения и их архитектуру. Уже на первом этапе развертывания они должны обеспечивать определенные значения скорости передачи для различных степеней мобильности абонента (т.е. разных скоростей его движения) в зависимости от величины зоны покрытия:
- до 2,048 Мбит/с при низкой мобильности (скорость менее 3 км/ч) и локальной зоне покрытия;
- до 144 кбит/с при высокой мобильности (до 120 км/ч) и широкой зоне покрытия;
- до 64 (144) кбит/с при глобальном покрытии (спутниковая связь).
Что же касается набора услуг, то он фактически приближается к предоставляемому в сетях фиксированной связи. Это и высокоскоростной доступ в Internet, и мультимедиа. Очевидно, что достижение таких высоких скоростей при ограниченном частотном ресурсе и работе в каналах с замираниями потребует разработки принципиально новых подходов к построению радиоинтерфейса.
Архитектура систем будущего включает два основных элемента: cетевую инфраструктуру (Access Network) и магистральные базовые сети (Core Network). Такая структура обеспечивает возможность наращивания инфраструктуры путем последовательной модификации ее составных элементов, но чтобы гарантировать работу сетей в долгосрочной перспективе, необходимо помнить об абонентской части архитектуры – терминалах, которые за счет изменяемой конфигурации должны удовлетворять требованиям многих стандартов.
В борьбе за лидерство при принятии мировых стандартов третьего поколения образовались два лагеря, оформившиеся в виде двух партнерских объединений: 3GPP и 3GPP2.
В первое объединение – 3GPP – входят ETSI (Европа), ARIB (Япония), Комитет T1 (США), а также три региональных органа стандартизации от Азиатско-Тихоокеанского региона – CWTS (Китай), TTA (Корея) и TTC (Япония). Важно отметить, что совместные позиции ETSI и ARIB должны упрочиться с внедрением экспериментальных сетей на базе WCDMA, активно разрабатываемых с участием компаний DoCoMo, Ericsson и Nokia.