Смекни!
smekni.com

Тонкопленочные резисторы (стр. 4 из 6)

Характеристика удельного сопротивления пленки в зависимости от процентного содержания N2, как показано на рис. 4, имеет горизонтальную часть и спад привеличине удельного сопротивления около 250 мкОм*см и ТКС порядка —0,75*10-4 1/°С. Важным свойством азотосодержащих танталовых пленок является то, что их можно анодировать как и чистый тантал. На практике состав пленки выбирается возможно близким к Ta2N, так как установлено, что резисторы из пленок такого состава имеют очень хорошую стабильность в течение всего периода нагрузочных испытаний.

Рисунок 4 - Влияние различной концентрации азота при напылении на удельное сопротивление и ТКС танталовых пленок

Существование танталовых пленок малой плотности впервые наблюдал Шютце. Изучая осаждение тантала, он и его коллеги обнаружили, что удельное сопротивление получаемых пленок зависит не только от напряжения на катоде. Результаты их наблюдений показаны на рис. 6. К сожалению, танталовые пленки с малой плотностью, полученные таким методом, оказываются нестабильными. Например, при стабилизирующей тепловой обработке в течение 1—2 ч при температуре 200°С происходит незначительное изменение поверхностного сопротивления, но ТКС падает очень быстро до величины порядка -3*10-4 1/°С (рис. 7).


Ряд монометаллических систем — алюминий, хром, вольфрам и рений — был исследован Циммерманом. Рений, благодаря существенным преимуществам, оказался оптимальном материалом для создания тонкопленочных резисторов. Данные по точности воспроизведения сопротивления свеженапыленных пленок, которую можно достигнуть для различных материалов в зависимости от величины поверхностного сопротивления, приведены на рис. 7.

Рисунок 7 - Зависимость точности воспроизведения поверхностного сопротивления, достижимой для различных мнометаллических ситем, от поверхностного сопротивления

2) Хром. Как указывалось ранее, процентное содержание хрома в пленках нихрома часто значительно превышает его долю в исходном материале (20%).

Вследствие ограниченной взаимной растворимости Ni и Сr в твердом состоянии, пленки нихрома, полученные напылением в вакууме, часто содержат в растворе больше хрома, чем это следует из термодинамики. Это является источником нестабильности, вследствие того, что избыток хрома выпадает из раствора. Более того, газ, поглощенный хромом во время его осаждения, оказывает на удельное сопротивление пленок хрома более сильное влияние, чем добавки никеля. В результате этого «чистые» пленки хрома имеют значительно более высокие удельные сопротивления, чем пленки нихрома оптимального состава. По этим причинам, а также ввиду большей простоты монокомпонентной системы, возник значительный интерес к хрому как к материалу для тонкопленочных сопротивлений. Хотя использование чистого хрома и исключает проблему контроля состава и распада твердого раствора, чувствительность свойств пленок хрома к условиям нанесения значительно выше, чем у пленок нихрома, вследствие влияния «встроенных» загрязнений; С другой стороны, хорошо известные адгезионные свойства хрома к стеклянным подложкам эффективны для резистивных элементов, так как они связаны с низкой склонностью хрома к агломерации. Кроме того, хром хорошо совместим с любым проводящим материалом. Дополнительная привлекательная черта хрома, с точки зрения осаждения пленок, — легкость сублимации. Обычно применяется вольфрамовый испаритель, покрытый хромом гальваническим способом. Перед использованием такие испарители рекомендуется подвергать термообработке в водороде, так как гальванические слои обычно содержат много окислов. Так как хром не очень тугоплавок, существует предельная температура, при которой пленки хрома могут работать непрерывно. Термообработка пленок хрома в вакууме вызывает понижение сопротивления вследствие эффектов отжига, отсутствующих у более тугоплавких пленок, таких, например, как тантал.

В настоящее время хром наиболее широко используется при изготовлении дискретных резисторов, которые могут быть подстроены до требуемых номиналов путем нарезки канавки, меняющей число квадратов пленки, или при помощи обработки абразивом. В микроэлектронике это, однако, неприменимо.

Пленки хрома, как и большинство резистивных пленок, состоят из относительно чистых островков металла в матрице изолирующей окиси хрома. Скоу и Тьюном было подробно изучено влияние условий осаждения на удельное сопротивление пленок хрома. При этом было обнаружено, что пленки с минимальным удельным сопротивлением могут быть получены только при одном сочетании температуры подложки и скорости осаждения (рис. 8).

Рисунок 8 - Влияние температуры подложки и скорости осаждения на отношение удельного сопротивления пленки к объемному споротивлению массивных образцов хрома.

2.3 Керметы

После того, как стало очевидным, что большинство тонкопленочных резисторов приобретает требуемые электронные свойства за счет включения примесей, стало логичным сознательное обеспечение таких включений. При этом нет необходимости ограничиваться примесями, образуемыми за счет остаточных газов. В то время как число примесей, образуемых за счет газов, ограничено азотом, кислородом и углеродом, твердые примеси можно создать в большом количестве. Наконец, коэффициент прилипания для большинства твердых примесей можно предполагать близким к единице, так что естественно в этом случае ожидать более высокой степени управления составом по сравнению с примесями газового происхождения.

1) Gr — SiO. Из большого числа комбинаций металл — диэлектрик, изученных в пленочном состоянии, наиболее успешные результаты в настоящее время достигнуты в системе хром — моноокись кремния. Одно из первоначальных оснований для разработки и важное свойство таких пленок — их высокое удельное сопротивление, а также стабильность и отсутствие большого отрицательного температурного коэффициента. В существующих литературных данных имеются некоторые расхождения относительно удельного сопротивления пленок Cr — SiO в зависимости от их состава, обусловленные, главным образом, неоднозначностью определения состава реальных пленок, а также сильной зависимостью удельного сопротивления от термической природы пленки. На рис. 9 приведены результаты по исследованию состава пленок с точностью ± 1 % с применением рентгеновского микроанализа, полученные Гленгом и др. Зависимость удельного сопротивления от состава приведена для пленок, осажденных при 200°С, а также после термообработок при 400, 500 и 600° С (в аргоне, в течение 1 ч при каждой температуре).

Рисунок 9 - Зависимость удельного сопротивления пленок Cr-SiO от состава и термообработки.


На рис. 10 приведены значения ТКС для пленок Сг — SiO, осажденных при 200°С и отожженных в течение 1 ч при 400°С. На практике для большинства применений стабилизирующая термообработка в течение 1 ч при 400°С является обязательной. Интересно отметить, что после стабилизирующей термообработки пленки, содержащие до 50 атомных процентов SiO, имеют положительные температурные коэффициенты, близкие к нулю. Гленг и др. показали, что свежеосажденные пленки — аморфны, однако после термообработки в них появляются кристаллические фазы (включая Cr3Si).

На основе измерений эффекта Холла Луд предположил, что в пленках, содержащих до 10% SiO, роль моноокиси кремния заключается в создании примесных центров в зонной структуре хрома. Пленки из чистого хрома имеют положительный коэффициент Холла, но с добавлением SiO этот коэффициент становится отрицательным, проходя через нуль при 5% SiO и достигая минимума при 10% SiO. В результате рентгеновских дифракционных исследований пленок, содержащих около 25% SiO, Скотт предположил, что в свежеосажденных пленках хром равномерно распределен в SiO, а после отжига появляются небольшие (~20 А) частицы хрома, образующие короткие цепочки, что сопровождается увеличением проводимости.

Рисунок 10 - Зависимость ТКС пленок Cr-SiO, осажденных при 260°С от состава, до и после термообработки при 400°С.


Несмотря на высокое удельное сопротивление пленок, появление положительного ТКС в пленках с более высоким содержанием SiO, подтверждает, что осажденные пленки состоят из зерен хрома (содержащих некоторое количество растворенного кремния), распределенных в матрице из моноокиси кремния. Физическое разделение 1 частиц обусловливает высокое удельное сопротивление и высокие отрицательные значения ТКС, так как для прохождения зазоров между частицами электроны должны быть термически возбуждены. Во время термообработки часть SiO днспропорционирует, образуя свободный кремний, реагирующий на поверхности каждого зерна с образованием слоя Cr3Si. Окисные прослойки между зернами «выжимаются» и зерна теперь касаются друг друга, так чтосопротивление изоляции заменяется сопротивлением контактирования зерен.

Рисунок 11 - Зависимость сопротивления пленок Cr-SiO (20% SiO) от времени термообработки.

Будучи защищенными от окисления, пленки Сr—SiO обладают хорошей термической стабильностью и не меняются по величине, даже если их прогревают до температуры, равной или большей, чем максимальная температура, при которой они были предварительно термообработаны (рис. 11). Отметим, что температура отжига играет значительно более важную роль, чем время отжига.