Смекни!
smekni.com

Тонкопленочные резисторы (стр. 5 из 6)


2.4 Полупроводниковые пленки

В тех случаях, когда требуется обеспечить высокое значение поверхностного сопротивления и допустимы относительно высокие величины ТКС, в качестве материала для резистивных пленок могут быть использованы полупроводники. В течение ряда лет изучались германий и кремний, для определения возможности их применения в качестве материалов для тонкопленочных резисторов. Однако самые лучшие результаты в этом вопросе были достигнуты с углеродом и окисью олова.

1) Углеродные пленки. Углеродные пленки в интегральных схемах не нашли широкого применения из-за трудностей управления поверхностным сопротивлением и высоких температур технологического процесса. Тем не менее они были применены при изготовлении дискретных резисторов. Последний обзор их технологии и свойств появился в 1960 г.. Углеродные резистивные пленки обычно осаждаются на керамические подложки, необходимые из-за высоких температур (порядка 1000° С), используемых в процессе осаждения, например, при пиролизе углеродсодержащего газа, как например, метана. Обычно газообразные углеводороды для лучшего управления технологическим процессом разбавляются нейтральными газами, например, азотом. Изменения температуры, концентрации газа и т. д. обеспечивают возможность получения пленок различной толщины. Таким образом получаются так называемые «углеродно-осажденные» резисторы. В связи с тем, что в настоящее время точное управление получением требуемого поверхностного сопротивления пиролитическим методом невозможно, резисторы индивидуально подгоняют до требуемого номинала нарезкой спиральных канавок на поверхности пленки, см. разд. 4В. ТКС чистых углеродных пленок относительно высок и меняется от -2,5*10-4 1/°С при 10 Ом/□ до –4*10-4 1/°С при 1000 Ом/□. Для учета небольших изменений сопротивления, связанных с присоединением контактных выводов, резисторы специально подгоняются до величины на 1% меньшей номинала, а окончательная подгонка осуществляется тонкой обработкой абразивом пленки перед нанесением защитного покрытия.

Гораздо более твердые и более стабильные пленки (сплавные пленки) можно получить, используя другие элементы, такие, например, как кремний и кислород с углеродом. По сравнению с обычными пленками, которые должны быть тщательно защищены, «сплавные» пленки нечувствительны к окислению даже без защитных покрытий. ОднакоТКСу них не меньше, чем у обычных углеродных пленок.

Резкое уменьшение ТКС углеродных пленок может быть обеспечено использованием вместе с метаном боросодержащего газа. Пленки этого типа имеют ТКС — 0,2. 10-4 1/°С при 10 Ом/□ (при 4% бора и -2,5* 10-4 1/°С при 1000 Ом/□. Для получения пленок, легированных бором, использовались также смеси гидрида бора с метаном и бензином, а также однокомпонентные системы типа трипропилборана Однако наиболее распространенной присадкой является ВСl3.

2) Пленки окиси олова. Обсуждавшиеся ранее системы для создания резисторов в различной степени подвержены влиянию окисления. Можно ожидать, что материал, определенным образом окисленный навоздухе, будет свободен от этого недостатка. Окись оловя и является как раз таким материалом. Кроме того, благодаря тугоплавкости, вероятность отжига или агломерации окиси олова низка. Наиболее распространенным методом получения пленок окиси олова является гидролиз хлорида олова (SnCl4) на поверхности подложки.


Рисунок 12 - Зависимость поверхностого сопротивления пленок окиси олова от концентрации сурьмы при различных толщинах пленки

Так как чистый хлорид олова гидролизуется слишком быстро, то для замедления реакции обычно добавляется спирт, например, этиловый, органическая кислота, например, уксусная, или, часто, HCI. Типичная процедура заключаетсяв нанесении раствора, содержащего равные объемные части различных составляющих, методом пульверизации на нагретую стеклянную или керамическую подложку, на поверхности которой происходит реакция. Скорость реакции при 500° С низкая, а около 800° С резко возрастает. Вследствие крайне высокой температуры окись олова образует пленку, обладающую высокой адгезией. Для устройств, в которых используется нанесение раствора на вращающиеся подложки струей, требуется тщательный контроль процесса.

Рисунок 13 - Зависимость ТКС пленок окиси олова от поверхностного сопротивления при различных концентрациях сурьмы.


Окись олова — полупроводник с широкой запрещенной зоной, — при тщательном обеспечении стехиометрии имеет высокое удельное сопротивление. Однако пленки, полученные гидролизом, могут или быть недоокисленными, или содержать некоторое количество ионов хлора. В этих случаях пленки имеют электронную проводимость. Для дальнейшей модификации проводимости пленок окиси олова обычно применяют добавки соответствующих легирующих примесей, сурьмы и индия. Сурьма, например, действует как донор, еще более увеличивая проводимость и уменьшая температурный коэффициент сопротивления, с другой стороны, индий действует как акцептор и компенсирует кислородные вакансии, обусловливая рост удельного сопротивления и ТКС. Пленки Su02 могут иметь высокое удельное сопротивление. Так, пленки с поверхностным сопротивлением 10000 Ом/□ могут иметь толщину 1 мкм. Эти пленки очень шероховатые и могут без ухудшения характеристик работать в окислительной атмосфере при температурах до 450°С. Такая высокая температурная стабильность уменьшает опасность ухудшения параметров резисторов за счет реиспарения в разогретых точках. В частности, пленки, легированные сурьмой, наиболее стабильны в окислительной атмосфере, в то время как у нелегированных пленок проводимость может изменяться за счет заполнения части кислородных вакансий. Зависимость поверхностного сопротивления при данной толщине от концентрации сурьмы в пленке приведена на рис. 12, а на рис. 13 приведена зависимость ТКС от поверхностного сопротивления для различных концентраций сурьмы.

Интересной особенностью пленок окиси олова является их высокая прозрачность. Вследствие этого они нашли широкое применение в производствах «проводящего стекла» и нагревательных элементов. Однако методика создания, использование высоких температур и то, что пленки, полученные путем гидролиза на поверхности, очень крупнозернистые и грубые, ограничивает применение пленок указанного типа в интегральных схемах Гладкие пленки, осажденные при более низких температурах, могли бы найти большее применение, однако проведенное напыление и катодное распыление окисных пленок показало, что для достижения полезных свойств после осаждения необходима термообработка при температурах порядка 800°С.


3. Конструирование тонкопленочных резисторов

3.1 Выбор геометрии резистора

Выбор величины поверхностного сопротивления для конкретной группы резисторов в схеме определяется резистором с минимальным номинальным его значением. Опыт показал, что для любого резистора число квадратов должно быть всегда больше 0,5, иначе существует опасность появления неточностей, вызываемых ухудшением контроля расстояния между контактными площадками и резко возрастающей чувствительностью к явлениям в контактах между проводящей и резистивной пленками.

Рисунок 14 - Сопротивление, вносимое различными элементами топологии резисторов.

По возможности, все резисторы следует выполнять в виде прямых линий; извилистые линии допустимы только в случаях крайней необходимости. Прямолинейные резисторы имеют лучшие высокочастотные свойства, пониженную чувствительность к миграции ионов натрия и меньшую вероятность отказов под нагрузкой и при воздействии влаги. Кроме того, в этом случае легко предсказать точное значение величины сопротивления.

На рис. 14 приведены топология и формулы для расчета резисторов в виде прямого угла (а) и криволинейной дорожки (б). В некоторых случаях для предупреждения осложнений, на углах используется конфигурация (в), в которой угол шунтирован проводящим материалом.

2.2 Выбор площади резистора

Под тонкопленочные резисторы, если нет серьезных причин делать иначе, целесообразно занимать всю доступную площадь. Это позволяет уменьшить погрешности, связанные с неточным воспроизведением размеров, и увеличить величину рассеиваемой мощности. На практике площадь всегда бывает ограничена и основная ее часть должна быть отдана под резисторы, рассеивающие самую большую мощность. Отсюда возникает необходимость оценки способности системы рассеивать мощность.

Рисунок 15 - Зависимость приращения температуры резисторов из кермета при мощности 8*103 Вт*см-2 от площади резистора.

Необходимо подчеркнуть, что рассеяние мощности не является свойством данного материала. Максимальная температура и плотность тока, при которых резистор может работать надежно, — единственные требования, которые могут быть определены. Мощность, необходимая для разогрева данного резистора до этой температуры, сложным образом зависит от конкретного материала подложки, способа монтажа на подложке и т. д.

В связи с непрерывным уменьшением размеров резисторов, величина удельной мощности, которую можно рассеять, прогрессивно возрастает и резистор превращается в точечный источник тепла. На рис. 15 в качестве примера показано, какова зависимость перегрева резистора из кермета на подложке из окисленного кремния, находящейся при комнатной температуре, от площади при удельной мощности 8*103 Вт/см2. В этом случае кремниевая подложка имела хороший теплоотвод, так что температура разогрева резистора определялась, главным образом, скоростью передачи тепла через термический окисел к кремнию. В результате температура резистора слабо зависела от размера подложки и or числа резисторов, одновременно находившихся под нагрузкой.