“Белорусский государственный университет информатики и радиоэлектроники”
Кафедра защиты информации
РЕФЕРАТ
на тему:
«Трансформаторы: уравнение обмотки, рабочие режимы, холостой ход, конструкция, магнитные материалы, электрические провода и изоляция»
МИНСК, 2009
Формула трансформатора. ЭДС. Уравнение равновесия для первичной обмотки
Рисунок 1 - Трансформатор
U1(t)= U1msin(ω1t) (1)
ω1=2πf (2)
Считаем, вторичная обмотка разомкнута (нет нагрузки). На первичную действует U1(t). В цепи возникает ток:
U1(t)=U1 => i10 => F10= i10* W1 => H10=F10/lср => В10 =μ* H10 (электромагнитная индукция). => Qc* В10 = Ф10 => ψ= W1* Ф10 => Ф10S => ψ=W1* Ф10, где Ф10 – магнитный поток; Ф10S – поток рассеивания.
Изменяющийся во времени магнитный поток приводит к возникновению ЭДС
=>
= -W1* = e10(t) (3)=>-W1*
= e10(t): (4)должны уравновешиваться.
Пока не будет уравновешено, этот процесс будет продолжаться. Приведенная зависимость электрических и магнитных процессов соответствует линейному режиму работы магнитопровода. В реальных трансформаторах такой режим является лишь приближением к реальности. В реальных трансформаторах необходимо считаться с неравенством «0» падения напряжения на сопротивлении проводов. В первичной обмотке трансформатора при i10 падение напряжения = r1*i10. В установившемся режиме для цепи первичной обмотки трансформатора справедливо уравнение равновесия:
U1(t) + e10(t) + e10S(t)= i10(t)*r1 (5)
U1(t)= -e10(t) - e10S(t) + i10(t)*r1 (6)
Этому уравнению можно поставит в соответствие:
(7)Рассмотрим режим, соответствующий отсутствию тока во вторичной обмотке. В этом случае все магнитные процессы определяются только электрическими процессами в первичной обмотке => e20(t) – в режиме ХХ.
(8) (9)n – коэффициент трансформации.
Т.к. U1(t) – синусоидально, то и отклик в виде ЭДС, и падение напряжения, и Ф10 также изменются по гармоническому закону.
Ф10(t)= Ф10m*sin(ωt) (10)
=-W1Ф10m(2πf)cos(ωt)==|cos(ωt)=-sin(ωt-π/2)|=2πfW1Ф10msin(ωt-π/2) (11)
E10m=2πfW1Ф10m (12)
E10= E10m/
(13)E10=√2*πfW1Ф10m (14)
E10=4,44*f*W1* Ф10m (15)
Формула трансформатора ЭДС
U1(t)≈-e10(t) (16)
n= E10/ E20≈ U1/ U2 (17)
Режим ХХ трансформатора
Режим ХХ трансформатора рассмотрим на практическом режиме отключения нагрузки. В этом режиме путем проведения специальных измерений (опыт ХХ) могут быть оценены важные технико-эксплуатационные параметры трансформатора. Анализ режима ХХ позволяет выявить основные физические процессы в трансформаторе, знание которых важно для других режимов.
Рисунок 2 – Электрическая схема трансформатора
U1(t)хх= -е10(t)- е10S(t)+ i10(t)*r1 (18)
В режиме ХХ трансформатор подключается под номинальное напряжение, то напряжение, при котором предусматривается работа трансформатора:
(19)Для дальнейшего рассмотрения и составления электрической модели трансформатора удобно ЭДС E10S за счет рассеяния трактовать как падение напряжения на чисто реактивном сопротивлении индуктивности рассеяния в цепи первичной обмотки jI10X0.Тогда:
(20)Для построения векторной диаграммы за точку отправления возьмем направление вектора магнитного потока
Рисунок 3 – Пример векторной диаграммы
При действии в магнитном проводнике переменного магнитного потока совершается работа по перемагничиванию реального магнитного материала (явление гистерезиса) и расходуется энергия на нагревание сердечника, возникающее в нем из-за появления вихревых токов (токов Фуко). В этой связи I10xx имеет две составляющих:
- активную
(отражает потери на гистерезис и вихревые токи)- составляющую в виде тока намагничивания Iμ, которую создает основной магнитный поток.
Пользуясь представленным выше уравнением (20) и поясняющей его векторной диаграммой трансформатора на ХХ (Рисунок 3), можно поставить в соответствие следующую его схему замещения (эквивалентную схему, электрическую модель трансформатора).
Рисунок 4 – Эквивалентная схема замещения трансформатора
Приведенная эквивалентная схема является строгим электрическим аналогом реального трансформатора, если должным образом определены величины сопротивлений:
r1, x1, r0, x0.
Эта схема позволяет производить все электрические расчеты токов, U, P, углов запаздывания и т.д.
Рабочий режим трансформатора: уравнение равновесия намагничивающих сил (УРНС)
В рабочем режиме трансформатор подключен под полное номинальное напряжение.
Рисунок 5 – Электрическая схема трансформатора
E2=> I2=> F2 => Ф2↔Ф(t) =>
Совокупный магнитный поток и совокупная магнитная сила определяется как результат взаимодействия Ф1 и Ф2 и F1 и F2.
(21) (22)Можно убедиться, что при любом рабочем режиме суммарная намагничивающая сила первичной и вторичной обмотки должна быть точно такой же как и в режиме ХХ. В таком случае, для рабочего режима трансформатора справедливо следующее уравнение равновесия намагничивающих сил (УРНС):
F1+F2= F10 (23)
I1*W1+ I2*W2=W1*I10 (I10 – токХХ) (24)
Удобно найти из этого уравнения значение I1, выраженное через I2, и являющееся техническим параметром трансформатора I10 (ток ХХ).
I1= I10- I2 (W1/W2) = I10- I′2 (25)
где I′2= I2/n, где n=W1/W2.
I1= I10- I′2 (УРНС). (26)
УРНС позволяет наметить Т-образную схему замещения трансформаторов.
Рис 7 – Т-образная схема замещения трансформатора
Физические процессы в трансформаторе в рабочем режиме наглядно поясняет векторная диаграмма, соответствующая УРНС, которое удобно записать в форме:
→ → →
I1*W1= W1*I10 - I2* W2 (27)
Рисунок 8 – Векторная диаграмма работы трансформатора
Рабочий режим трансформатора: эквивалентная схема
При формировании эквивалентной схемы необходимо обеспечить ее преемственность в схеме замещения трансформатора для ХХ. Кроме того, поиск схемы замещения будем осуществлять с учетом выявленной ранее возможности построения Т-образной эквивалентной схемы трансформатора.
Рисунок 9 – Эквивалентная схема трансформатора в рабочем режиме
Эквивалентную схему можно построить, пользуясь следующими уравнениями:
(уравнение электрического воздействия) (28) (29)Рабочий режим трансформатора: векторная диаграмма при нагрузке индуктивного характера
Рисунок 10 - Векторная диаграмма при нагрузке индуктивного характера
отстает от на 90 отстает от его задающего тока на угол запаздывания α. Ток отстает от создающей его ЭДС = .