Смекни!
smekni.com

Усилитель мощности звуковой частоты (стр. 2 из 3)

Выбираем

Далее произведем расчет величин ёмкостей С2 и С3 дабы обеспечить заданную полосу пропускания УМЗЧ (Ku – коэффициент усиления по уровню 0.7):

Частоту fв устанавливаем конденсатором С3:

Частоту fв устанавливаем конденсатором С2:

Для второго ОУ нашей мостовой схемы входным является сигнал с первого ОУ, а входное сопротивление равно сопротивлению обратной связи, тем самым обеспечивая повторение входного сигнала. В схеме симметричные элементы соответствующие элементам рассчитанным выше имеют сходные с ними параметры. В результате использования мостовой схемы мы получаем амплитуду напряжения на нагрузке в 2 раза больше, чем в обычной схеме, тем самым добиваясь характеристик заданных в техническом задании. Питание операционных усилителей, с учетом запаса на колебания напряжения в сети выбираем равным 33 В, как и у самой схемы.

3. Исследование УМЗЧ с помощь ЭВМ

Исследование рассчитанного усилителя проведем с помощью пакетом автоматизированного проектирования MicroCap 6.0 и OrCAD 9.1. Собираем схему используя SPICE - модели транзисторов и операционных усилителей. На вход подключаем генератора синусоидальных сигналов с частотой 1КГц. Остальные элементы схемы задаются исходя из расчетов. Загрузочный файл пакета OrCAD 9.1 нашей схемы приведен в приложении D, а графическое представление в пакете MicroCap 6.0 в приложении G.

Готовую схему исследуем используя разные виды анализов. Результаты переходного анализа приведены в приложении А. Здесь приведены графики сигналов на выходе усилителя при трех разных температурах (10, 27 и 60°С) и при номинальной амплитуде входного сигнала.

В приложении В приведена характеристика выходной мощности при максимальном входном сигнале.

В приложении C приведена АЧХ УМЗЧ при трех температурах (10, 27 и 60°С), показана полоса пропускания по уровню 0.7 (а в дБ уровень 0.7 соответствует –3дБ от максимального коэффициента передачи). Более точная настройка полосы усилителя осуществляется конденсаторами С2 и С3.

Вычисление чувствительности на постоянном токе выходного напряжения к изменениям параметров схемы производилось в пакете OrCAD 9.1. Результат этих вычислений в виде выдержки из выходного файла приведен в приложении H.

Результаты из выходного файла для Фурье - гармоник приведены в приложении E. Анализ MonteCarlo для наихудшего случая, приведенный в приложении F, позволяет проследить, как зависит форма сигнала на выходе от влияния разброса параметров (в данном примере разброс задается величинам резисторов 10%).

Заключение

Мы выполнили курсовой проект, который заключался в проектировании аналогового электронного устройства, в нашем случае усилителя мощности звуковой частоты. В процессе работы была подобрана техническая литература по разрабатываемому устройству, проанализировано техническое задание, в результате чего мы произвели выбор структурной схемы устройства, выполнили расчет её элементов. Проверка работы и дальнейшая настройка схемы производилась с использованием современных методов автоматизированного проектирования радиоэлектронных устройств, а именно MicroCap 6.0 и OrCAD 9.2. С помощь этих пакетов были проведены (и некоторые представлены графически) следующие анализы разработанной схемы:

Вычисление чувствительности на постоянном токе выходного напряжения к изменениям параметров схемы

Расчет частотных характеристик

Переходный анализ

Анализ Фурье - гармоник для определения коэффициента гармоник

Температурный анализ (для трех значений температуры (10, 27, 60)

Анализ характеристик для наихудшего случая

Оформление технической документации было произведено в точности по результатам проектирования. Цели, которые были поставлены перед нами в техническом задании, были успешно достигнуты.

Библиографический список

1. Проектирование усилительных устройств: Учебное пособие / Под ред. М.В. Терпугова. М.: Высшая школа, 1982. 190 с.

2. Титце Ч., Шенк К. Полупроводниковая схемотехника: Справочное руководство/ Пер. с нем. под ред. А.Г. Алексенко. М.: Мир, 1980. 512 с.

3. Шкритек П. Справочное руководство по звуковой схемотехнике: Пер. с нем. М.: Мир, 1991. 446 с.

4. Расчет электронных устройств на транзисторах/ Бочаров Л. Н., Жебряков С. К., Колесников И. Ф. – М.: Энергия, 1978. 208с.

5. Интегральные схемы: Операционные усилители: Справочник. Том 1. – М.: Физматлит, 1993. 240 с.

6. Транзисторы для аппаратуры широкого применения: Справочник / К. М. Брежнева, Е. И. Гантман, Т. И. Давыдова и др. Под ред. Б. Л. Перельмана. – М.: Радио и связь, 1981. 656 с.

7. Важенин В.Г. Исследование усилительных каскадов при различных схемах включения транзистора. Екатеринбург: УГТУ-УПИ, 2000. 39 с.

8. Стандарт предприятия. СТП УГТУ – УПИ 1 – 96: Общие требования и правила оформления дипломных и курсовых проектов (работ). Екатеринбург: УГТУ-УПИ, 1996. 130 с.

9. Кийко В.В. Моделирование и анализ электронных схем на ЭВМ: Методические указания к курсовой работе по дисциплине “Автоматизированное проектирование радиоэлектронных схем”. Екатеринбург: УГТУ-УПИ, 1994. 40 с.

10. Проектирование аналоговых электронных устройств: Методические указания / В.Г. Важенин, С.В. Гриньков, Н.А. Дядьков, Л.Л. Лесная. Екатеринбург: УГТУ-УПИ, 2001. 36 с.

Приложения

Приложение A

А1 Переходная характеристика при Uвыхмакс

А2 Переходная характеристика при Uвыхном для температур 10, 27 и 60 °С

Приложение B

Приложение С

приложение D

* KoltushevIlya

* Variant 109

*

.opt acct list node opts nopage reltol=0.0001 ITL5=0 ITL4=200

.width out=80

.op

*.temp 27

.temp 10 27 60

.ac dec 20 10 100k

.tran/op 1u 5m

.probe

.TF V(100,101) vin

.FOUR 1KHz V(100,101) V(111)

.NOISE V(100,101) Vin

.SENS V(100,101)

.WCase tran V(100,101) YMAX devices r

.print noise onoise inoise

*

C1 31 111 47U

C2 6 31 0.45U

C3 4 2 18.5P

C4 3 0 0.1U

C5 3 0 47U

C6 21 20 18.5P

C7 3 0 0.1U

C8 3 0 47U

D1 3 9 2S147A

D2 4 17 2D104A

D3 17 18 2D104A

D4 18 32 2D104A

D5 32 8 2D104A

D6 21 29 2D104A

D7 29 30 2D104A

D8 30 33 2D104A

D9 33 23 2D104A

D10 3 24 2S147A

Q1 8 9 10 KT817V

Q2 5 4 7 KT817V

Q3 3 8 11 KT816V

Q4 5 7 12 KT819G

Q5 3 11 13 KT818G

Q6 5 22 27 KT819G

Q7 3 26 28 KT818G

Q8 5 21 22 KT817V

Q9 3 23 26 KT816V

Q10 23 24 25 KT817V

R1 0 31 RMOD 10K

R2 0 1 RMOD 1200

R3 6 2 RMOD 10K

R4 2 4 RMOD 180K

R5 9 0 RMOD 2830

R6 3 10 RMOD 570

R7 11 7 RMOD 56

R8 100 12 RMOD 0.5

R9 13 100 RMOD 0.5

R10 101 27 RMOD 0.5

R11 28 101 RMOD 0.5

R12 26 22 RMOD 56

R13 3 25 RMOD 570

R14 0 19 RMOD 1200

R15 20 4 RMOD 180K

R16 20 21 RMOD 180K

R17 24 0 RMOD 2830

RN 100 101 4

V1 5 0 33V

V2 0 3 33V

VIN 111 0 SIN (0 1 1000)

X1 1 2 3 4 5 LM344

X2 19 20 3 21 5 LM344

*

.model RMOD RES(R=1 DEV/GAUSS 10%)

.model R RES(R=1)

.MODEL D223A D ()

.MODEL KS162A D (IS={89.00E-15} N=1.16 BV=4.7 IBV=5U RS=25 TT=57N CJO=72.00P

+ VJ=0.8 M=0.47 FC=0.5)

.MODEL KT819G NPN (IS=974.4F BF=60 BR=2.949 NR=0.7 ISE=902.0P

+ IKF=4.029 NE=1.941 VAF=30 RC=0.1 RB=2 TF=39.11N TR=971.7N XTF=2 VTF=10 ITF=20

+ CJE=569.1P MJE=0.33 CJC=276.0P XTB=10)

.MODEL KT818G PNP (IS=974.4F BF=60 BR=2.949 NR=0.7 ISE=902.0P

+ IKF=4.029 NE=1.941 VAF=30 RC=0.1 RB=2 TF=39.11N TR=971.7N XTF=2 VTF=10 ITF=20

+ CJE=569.1P MJE=0.33 CJC=276.0P XTB=10)

.MODEL 2D104A D (IS=10F N=1 RS=.1 IKF=0 XTI=3 EG=1.11 CJO=1P M=.3333 VJ=.75

+ FC=.5 ISR=100P NR=2 BV=100 IBV=100U TT=5N)

.MODEL 2S147A D (IS={1.236E-12} N=1.87 BV=4.7 IBV=5U RS=20.2 TT=104.0N

+ CJO=87.60P VJ=0.73 M=0.3751 FC=0.5)

.MODEL KT816V PNP (IS=61.09F XTI=3 EG=1.11 VAF=85 BF=100.3 ISE=862.2F

+ NE=1.481 IKF=1.642 NK=.5695 XTB=1.5 BR=1.453 ISC=1.831P NC=1.514

+ IKR=.7536 RC=.1198 CJC=130.06P MJC=.3333 VJC=.75 FC=.5 CJE=100.8P

+ MJE=.3333 VJE=.75 TR=465.1N TF=31.79N ITF=1 XTF=2 VTF=10)

.MODEL KT817V NPN (IS=66.19F XTI=3 EG=1.11 VAF=105 BF=94.53 ISE=728.1F

+ NE=1.432 IKF=.4772 NK=.4907 XTB=1.5 BR=1.663 ISC=1.043P NC=1.476

+ IKR=.9431 RC=.1435 CJC=98.3P MJC=.3155 VJC=.75 FC=.5 CJE=108.6P

+ MJE=.3333 VJE=.75 TR=137.2N TF=26.48N ITF=1 XTF=2 VTF=10)

*

* OPAMP

* PINS: 1=NC+ 2=NC - 3=VEE 4=VO 5=VCC

.SUBCKT LM344 1 2 3 4 5

C1 6 7 2.88675e-012

C2 12 13 1e-011

CE 10 14 1e-019

D1 18 19 D

D2 20 18 D

D3 4 16 D

D4 17 4 D

D5 3 5 D

E1 14 0 POLY(2) 5 0 3 0 0 0.5 0.5

F1 13 14 POLY(5) VS1 VC VE VLP VLN 0 1.14592e+008 - 1.14592e+008 1.14592e+008

+ 1.14592e+008 - 1.14592e+008

GA 12 0 6 7 6.28319e-005

GCM 0 12 10 0 1.98692e-009

H1 18 0 VS2 1000

IEE 10 3 2.5016e-005

Q1 6 2 8 QINN

Q2 7 1 9 QINP

R2 12 11 100000

RC1 5 6 15915.5

RC2 5 7 15915.5

RE1 8 10 13837.5

RE2 9 10 13837.5

RE 10 14 7.99488e+006

RO2 13 14 25

ROUTAC 15 4 50

RP 5 3 278276

VC 5 16 2

VE 17 3 2

VLN 0 20 20

VLP 19 0 20

VS1 11 0 0

VS2 13 15 0

*

.MODEL D D ()

.MODEL QINN NPN (BF=1470.59)

.MODEL QINP NPN (BF=1666.67 IS=1e-016)

.ENDS LM344

*

*** Parts Count

** Battery 2

** Resistor 18

** Capacitor 8

** Diode 10

** NPN 6

** PNP 4

** Sine source 1

** Opamp 2

.END

Приложение Е

**** FOURIER ANALYSIS TEMPERATURE = 10.000 DEG C

FOURIER COMPONENTS OF TRANSIENT RESPONSE V(100,101)

DC COMPONENT = 3.598210E-01

HARMONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED

NO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG)

1 1.000E+03 2.768E+01 1.000E+00 1.791E+02 0.000E+00

2 2.000E+03 1.189E-02 4.295E-04 4.797E+01 - 3.102E+02

3 3.000E+03 1.364E-01 4.927E-03 1.793E+02 - 3.580E+02

4 4.000E+03 1.124E-02 4.062E-04 2.049E+01 - 6.959E+02

5 5.000E+03 1.006E-02 3.634E-04 1.800E+02 - 7.155E+02

6 6.000E+03 4.387E-03 1.585E-04 4.501E-01 - 1.074E+03

7 7.000E+03 1.553E-02 5.611E-04 1.640E+02 - 1.090E+03

8 8.000E+03 4.618E-03 1.668E-04 2.145E+01 - 1.411E+03

9 9.000E+03 7.305E-03 2.639E-04 1.660E+02 - 1.446E+03

**** FOURIER ANALYSIS TEMPERATURE = 27.000 DEG C

FOURIER COMPONENTS OF TRANSIENT RESPONSE V(100,101)

DC COMPONENT = 3.647425E-01

HARMONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED

NO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG)

1 1.000E+03 2.806E+01 1.000E+00 1.791E+02 0.000E+00

2 2.000E+03 9.639E-03 3.436E-04 3.629E+01 - 3.219E+02

3 3.000E+03 9.076E-02 3.235E-03 1.796E+02 - 3.576E+02

4 4.000E+03 1.098E-02 3.912E-04 1.709E+01 - 6.993E+02

5 5.000E+03 1.090E-02 3.885E-04 1.696E+02 - 7.258E+02

6 6.000E+03 4.767E-03 1.699E-04 1.454E+01 - 1.060E+03

7 7.000E+03 1.623E-02 5.786E-04 1.709E+02 - 1.083E+03

8 8.000E+03 4.721E-03 1.683E-04 1.689E+01 - 1.416E+03

9 9.000E+03 7.313E-03 2.606E-04 1.629E+02 - 1.449E+03

TOTAL HARMONIC DISTORTION = 4.404183E-01 PERCENT