Смекни!
smekni.com

Физико-топологическая модель интегрального биполярного п-р-п-транзистора (стр. 2 из 2)

— равновесная концентрация дырок в эмиттере;

— напряженность тормозящего поля в эмиттере, образующегося в результате диффузии электронов от поверхности к р-п-переходу эмиттер-база;

— время жизни инжектированных дырок в эмиттере.

Рекомбинационная составляющая тока базы Iбпсогласно (1) описывается выражением

(23)

где

— начальное значение тока;

q— концентрация ловушек захвата электронов и дырок;

Sn, Sp— сечения ловушек захвата электронов и дырок;

Vtn, Vtp— тепловые скорости электронов и дырок;

Dп пов— коэффициент диффузии электронов на поверхности пассивной базы;

τп пов — время жизни электронов на поверхности пассивной базы;

Рэ— периметр эмиттера.

Параметры Nt, Sn, Sp, Vtn, Vtpне зависят от топологических размеров и профиля легирования. Коэффициент Dп пови время τп пов слабо зависят от концентрации акцепторов на поверхности. Кроме того, следует заметить, что ток Iбр в отличие от других составляющих тока базы пропорционален не площади, а периметру эмиттера. Последнее обстоятельство необходимо учитывать при анализе зависимости коэффициента передачи тока от топологических размеров эмиттера.

Рекомбинационная составляющая тока базы Iбр-псогласно (1) находится из выражения

(24)

где

— времена жизни электронов и дырок в ОПЗ р-п-перехода эмиттер-база.

Времена τпо и τро уменьшаются с ростом концентрации легирующих примесей в ОПЗ.

На рис.2 приведены графики зависимостей всех рассмотренных токов от напряжения Uбэ, построенные для типичных значений электрофизических параметров (1), определяющих значения этих токов.

Рис. 2. Графики зависимостей:

а ‑ токов Iк, Iби, 1бn, 1бp-n, от напряжения Uбэ;

б ‑ коэффициента передачи тока от коллектора

Следует отметить, что рекомбинационные токи слабее зависят от напряжения база-эмиттер, что учитывается коэффициентом два в знаменателе экспоненциальных множителей выражений (23) и (24).

С учетом (6) и графиков, приведенных на рис.2,а, можно построить график зависимости Вст(Iк), представленный на рис.2,б.

Сильная зависимость коэффициента передачи тока от тока коллектора имеет место в диапазоне рабочих токов коллектора БТ. Поэтому при проведении исследований зависимости коэффициента Вст(Iк) от конструктивно-технологических параметров необходимо поддерживать ток Iкпостоянным, что обеспечивается соответствующим изменением напряжения прямого смещения на p-n-переходе база эмиттер Uбэ. Напряжение Uбэ, обеспечивающее заданный ток Iк, с учетом принятого ранее допущения Iэ = Iки соотношения (21) может быть рассчитано по формуле

(25)

Из выражения (25) следует, что при увеличении Iэо, которое может произойти при изменении конструктивно-технологических параметров БТ (при проведении соответствующих исследований), напряжение Uбэ.уменьшится, что приведет к уменьшению составляющих тока базы.

Граничная частота усиления БТ согласно (1) определяется выражением

, (26)

где

- постоянная цепи заряда барьерной емкости p-n-p-перехода база-эмиттер Сбэ;

- время пролета через квазинейтральную базу;

- постоянная цепи заряда барьерной емкости p-n-p перехода коллектор-база Скб.

Барьерная емкость Сбэ, состоит из двух параллельно включенных емкостей донной и боковой частей p-n-перехода база-эмиттер:

Сбэ= Сбэдон+ Сбэбок, (27)

где Сбэдон=εε0·zэ·Lэ/lбэ(xэ) – емкость донной части p-n-перехода база-эмиттер;

Сбэбок=

- емкость боковой части p-n-перехода база-эмиттер;

Поскольку ширина ОПЗ зависит от концентрации легирующей примеси в p-n-переходе, а она в боковой части p-n-перехода изменяется по глубине, то Сбэбок также зависит от глубины и с учетом двухмерного распределения донорной примеси может быть определена из выражения

, (28)

где Nд(х,у) = Ndn·erfc[(х+1,5у)/2

] — двухмерное распределение донорной (эмиттерной) примеси;

φкэбок(х) — контактная разность потенциалов боковой части р-n-перехода база-эмиттер(зависит от глубины по той же причине, что и ширина lбэбок.).

Сопротивление базы Rб можно представить состоящим из двух последовательно включенных сопротивлений активной и пассивной базы, по которым протекает ток базы от соответствующего вывода до р-n-перехода эмиттер-база:

Rб =Rба +Rбпас, (29)

где

— сопротивление активной части базы;

— сопротивление пассивной части базы.

Барьерная емкость Скб: по аналогии с емкостью Сбэ также состоит из двух параллельно включенных емкостей донной и боковой частей р-п-перехода коллектор-база:

Скб=εε0(Sкбдон+Sкббок), (30)

где Sкбдон и Sкббок — площади донной и боковой частей р-n-перехода коллектор-база. Поскольку коллектором является равномерно легированный эпитаксиальный слой, то концентрации легирующей примеси в боковой и донной частях этого р-n-перехода одинакова, а значит, и постоянна толщина ОПЗ lкб

Напряжения лавинного пробоя плавного р-п-перехода база-эмиттер:

и резкого р-п-перехода коллектор-база:


Литература

1. Новиков Ю.В. Основы цифровой схемотехники. Базовые элементы и схемы. Методы проектирования. М.: Мир, 2001. - 379 с.

2. Новиков Ю.В., Скоробогатов П.К. Основы микропроцессорной техники. Курс лекций. М.: ИНТУИТ.РУ, 2003. - 440 с.

3. Пухальский Г.И., Новосельцева Т.Я. Цифровые устройства: Учеб. пособие для ВТУЗов. СПб.: Политехника, 2006. - 885 с.

4. Преснухин Л.Н., Воробьев Н.В., Шишкевич А.А. Расчет элементов цифровых устройств. М.: Высш. шк., 2001. - 526 с.

5. Букреев И.Н., Горячев В.И., Мансуров Б.М. Микроэлектронные схемы цифровых устройств. М.: Радио и связь, 2000. - 416 с.

6. Соломатин Н.М. Логические элементы ЭВМ. М.: Высш. шк., 2000. - 160 с.