Смекни!
smekni.com

Фильтры нижних частот (стр. 2 из 2)


Рисунок 6.

На рисунке 6 приведены графики затухания чебышевских полиномиальных ФНЧ для значений n=2 и n=5 при одинаковых Δа.

Исследование функции а(

) позволяет сделать ряд важных и интересных для практики выводов:

1. При одном и том же значении Δа увеличение порядка передаточной функции приводит к увеличению крутизны характеристики затухания за пределами полосы пропускания.

2. При неизменном значении n затухание вне полосы пропускания тем больше, чем больше Δа.

3. Наименьшие (равные 0) и наибольшие (равные Δа) значения затухания чередуются в полосе пропускания. Именно поэтому аппроксимацию по Чебышеву часто называют «равноволновой».

4. Затухание фильтра в полосе задержания с увеличением частоты возрастает монотонно.

По заданным требованиям к характеристике затухания в полосе задерживания порядок ФНЧ Чебышева рассчитывается так же, как и порядок ФНЧ Баттерворта, исходя из условия а(

)
а0.

Решив данное неравенство относительно n получим:


(4).

Конструирование функции Т(р) по известной |T(j

)|2 производится обычным путём. Схемы лестничной реализации будут иметь тот же вид, что и у любого другого полиномиального ФНЧ при одинаковом n.

Различие будет лишь в значениях величин параметров элементов. Табулированные решения по расчёту чебышевских ФНЧ приводятся в справочной литературе.

Преимущество фильтра Чебышева состоит в том, что при одинаковом количестве элементов и при одинаковом, Δа в полосе пропускания, этот фильтр имеет большее затухание в полосе задерживания по сравнению с фильтром Баттерворта.

3. ФНЧ со всплесками затухания (ф-ры Золотарева)

Отличительной особенностью характеристик затухания полиномиального ФНЧ является их монотонное возрастание по мере удаления от полосы пропускания. Однако, если необходимо синтезировать ФНЧ со значительным уровнем гарантированного затухания а0 и при узкой полосе перехода, то применение полиномиальных конструкций приводит к неоправданно большому количеству элементов в таких случаях имеет смысл обратиться к другим передаточным функциям, в частности имеющими нули полинома, а в полосе задержания всплеск затухания, то есть к функциям вида:

(5)

где

– полином Гурвица степени n;
1,
2, .....,
– частоты в полосе задержания, где АЧХ фильтра обращается в нуль(затухание принимает бесконечно большое значение, то есть имеет место его «всплеска»).

Частотная зависимость затухания имеет вид:

(6)

Среди ФНЧ, передаточная функция которых имеет вид дроби (5), наибольшее распространение получили ФНЧ с изоэкстремальными характеристиками затухания или ФНЧ Золотарёва.

Требования к характеристике затухания ФНЧ такого типа формулируется следующим образом: затухание фильтра в полосе пропускания не должно превышать заданной величины Δа, а в полосе задержания быть не менее заданной величины а0.

В подобных случаях, при аппроксимации характеристик затухания фильтра используется одна из задач наилучшего приближения функций, сформулированная и решённая Е.И. Золотарёвым (1847-1878), профессором Петербургского университета, учеником П.Л. Чебышева, а именно задача о рациональной функции порядка n, значения которой по абсолютной величине в интервале -1

1 не превышали бы единицы, а в интервале |
| > 1 наименьшее по абсолютной величине её значение было бы максимально возможным.

Соответствующая рациональная функция может быть названа дробью Золотарёва.

Если в выражение а = 10lg(1+A0Pn2(

)) под Pn(
) понимать дробь Золотарёва, то в соответствии со свойствами последней наименьшее значение затухания такого фильтра в полосе задержания будет максимально возможным по сравнению со всеми другими фильтрами с теми же значениями.

График затухания ФНЧ с характеристиками Золотарёва, а также возможные схемы реализации приведены для случая n = 5 на рисунке 7.

Рисунок 7.

Видно, что всплески затухания расположены так, что значения минимумов в полосе задержания оказываются одинаковыми и равными.

Фильтры с характеристиками Золотарёва (или просто ФНЧ Золотарёва) называют иногда эллиптическими, поскольку значения нулей и полюсов дроби Золотарёва выражаются через эллиптические функции.

Решения, связанные с расчётом ФНЧ Золотарёва, в настоящее время табулированы и доведены до схем и значений параметров элементов (см. Л.2, стр. 292-295).

Эффективность ФНЧ Золотарёва может быть подтверждена примером, где к ФНЧ предъявляются довольно жёсткие требования.

Δа=0,01 Hп, a0=5.0 Hп,

к=1,08.

(7)

Расчёт порядка n различных фильтров, удовлетворяющий указанным требованиям, даст следующие результаты:

Число элементов равняется соответственно 7, 18, 80.

В данном примере ФНЧ Золотарёва явно оказывается вне конкуренции.

Заключение

Подробное изучение свойств различных фильтров позволяет сделать вывод, что в отдельных частных случаях при сравнительно широких полосах перехода минимальным числом элементов может обладать полиномиальный ФНЧ. Могут иметь место такие ситуации, когда по числу элементов ФНЧ Золотарёва и полиномиальный ФНЧ Чебышева оказываются одинаковыми. Тогда предпочтение отдают тому типу, который более полно удовлетворяет другим требованиям (габариты, технология изготовления и т.д.).

Литература, используемая для подготовки лекции

1. Белецкий А.Ф. «Теория линейных электрических цепей » Москва 1986 c 368-395

2. Белецкий А.Ф. «Линейные устройства аппаратуры связи. Конспект лекций»

3. Бакалов В.П. «Теория электрических цепей» Москва «Радио и связь» 1998 c 372-382.