Смекни!
smekni.com

Фізико–технологічні процеси створення електролюмінісцентних плоских пристроїв відображення інформації (стр. 3 из 5)

1.4 Органічні електролюмінісцентні випромінювачі

Останніми роками інтенсивно ведуться роботи, зв'язані із застосуванням гнучких органічних електролюмінісцентних елементів (ЕЛЕ). Таким приладам властиві наступні особливості: високий ступінь інтеграції, ефективне використання площі, велика яскравість, висока надійність, можливість створення індикатора будь-якої форми. Електролюмінісцентний елемент змінного струму складається з прозорого металевого, такого, що світиться, відображає діелектричного і контактного шарів[1] .


Розділ 2. Конструкції і оптичні параметри ЕЛ, дисплеїв

2.1 Конструкція стандартного тонко плівкового ЕЛ, дисплея

Тонкоплівкові електролюмінісцентні (TFEL) дисплеї засновані на розміщенні ізолюючих шарів, а також шару світло випромінюючого люмінофора між прозорими і металевими електродами, як показано на рисунку 2.1. Зазвичай тонко плівковий ЕЛ дисплей побудований на скляній підкладці завтовшки 1,1 мм, виконаною з натрієвого вапна (розмір 195 х 265 мм), і герметичним покривним склом завтовшки 1,1 мм. Спеціальною технологією, розробленою компанією Planar Systems, що реалізовується, є атомне осадження шарів (ALD). Цей метод забезпечує дуже однорідні, добре контрольовані і вільні від пір, шари тонкої плівки і надзвичайно тверді ізолюючі плівки. Світло генерується за допомогою ударного збудження атомів Мn в люмінофорі ZNS електронами, переміщуваними за допомогою прикладеної напруги змінного струму (див. рис. 2.2)[5]. Збудлива напруга може бути синусоїдальної або прямокутної форми.

Рис 2.1. Тонко плівковий електролюмінісцентний дисплей у конфігурації матричного дисплея [5].

Воно прикладається методом мультиплексування між електродами стовпців на одній стороні і електродами рядків на іншій стороні люмінофора (див. рисю2.3). Кожного разу, коли напруга перевищує поріг номінальної напруги близько 200 В, генерується короткий імпульс світла з постійною часу загасання менш ніж 1 мс, і таким чином яскравість випромінюваного світла приблизно пропорційна частоті збудження.

Рис 2.2. Випромінювання світла шляхом збудження атомів Mn за допомогою електронів у люмінофорі ZnS[5].

Рис. 2.3. Управління матричним електролюмінісцентним дисплеєм за допомогою напруги змінного струму[6].

У типових застосуваннях матричних дисплеїв частота збудливої напруги може досягати 250 Гц. У семи сегментних типах дисплеїв (пряме управління без мультиплексування) використовуються навіть вищі частоти. Високовольтні імпульси генеруються електронікою TFEL дисплея, що управляє. Напруга живлення дисплея 5 В і/або 12 В. У стандартному дисплеї ЕЛ як шар люмінофора застосовується ZnS:Mn, і результуючий спектр випромінювання світла є жовтим (див. рис. 2.4.) з максимумом близько 580 нм. Залежно від вимог до кольору, шляхом зміни типу люмінофора можуть бути також отримані інші кольори [5,6].


Рис 2.4. Спектр світлової віддачі люмінофора (ZnS:Mn) електролюмінесцентного дисплея[6].

Завдяки справжній структурі твердого тіла досягаються различ ные корисні параметри. Електролюмінесцентні дисплеї є надзвичайно витривалими в широкому діапазоні робочих температур (–50.85°С, обмежений електронікою, що управляє ), мають тривалий термін служби більше 100 000 ч, широкий кут огляду (більш 160°), короткий час відгуку (менше 1 мс) у всьому діапазоні температур і хороший контраст[6].

2.2 Технологія прозорого ЕЛ, дисплея

Прозорі електролюмінісцентні дисплеї конструюють на базі структури стандартного дисплея ЕЛ шляхом заміни заднього металевого електроду прозорим електродом (наприклад, з окислу індия і олова, ITO) і видалення решти непрозорих шарів із структури дисплея. Для максимального збільшення світло пропускання необхідно погоджувати коефіцієнт заломлення суміжних шарів. Схема поперечного перетину структури показана на рисунку 2.5. Іншим важливим параметром в оптимізації шарів прозорого дисплея ЕЛ є зменшення «ефекту ореолу», який обумовлений внутрішніми віддзеркаленнями, коли не узгоджений коефіцієнт заломлення шарів. У оптичних системах цей ефект також називають оптичним хвилеводом. Відбите світло переміщається між шарами і врешті-решт покидає випромінюючий піксель завдяки ефекту розсіяння. Цей ефект спостерігається, головним чином, в прозорому дисплеї ЕЛ, проте їм можна управляти.

Рис 2.5. Схема поперечного перерізу тонко плівкової електролюмінісценції[7].

Критерієм оцінки даного ефекту є відстань від пікселя, на якому не видимий витік світла при спостереженні через мікроскоп. Як показано нижче, зона ефекту ореолу зменшена шляхом оптимізації шарів і переходу на люмінофор без розсіювання. Іншим способом зменшення ореолу є покриття зовнішніх поверхонь матеріалами, що анти відображають. Іншою важливою проблемою є необхідність виготовлення гладкого шару люмінофора з метою мінімізації розсіяння світла. На початковій стадії розробки використовувався стандартний склад люмінофора і коефіцієнт пропускання був всього лише 75%. Розробка гладших плівок поліпшила світло пропускання до 84%. Дуже складно зробити електроди прозорими, підтримуючи при цьому високу провідність, таку ж, як у металевих електродів. Під час роботи над цим проектом було пройдено декілька етапів для досягнення належних параметрів. Вища провідність також була ключовим параметром для забезпечення надійності панелі при випробуваннях в жорстких умовах навколишнього середовища, включаючи тривалу експлуатацію при високих температурах[7].

Електроніка прозорого дисплея, що управляє, аналогічна стандартним дисплеям ЕЛ. Підключення до майданчиків електродів контуру може бути виконане, наприклад, за допомогою автоматизованої збірки на стрічковому носієві (TAB) для драйверів стовпців і термосварки до друкарської плати для з'єднання з драйверами рядків, що управляють, розміщеними в корпусах для поверхневого монтажу. Можуть бути розглянуті і інші схеми підключення[6,7].

2.3 Результати випробувань і оптичні параметри

Хорошою моделлю для демонстрації прозорого TFEL дисплея був дисплей QVGA (дозвіл 320 Ч 240 пікселів) з кроком стовпців і рядків 0,36 мм і сумарним коефіцієнтом заповнення електродів 74,3%. Цей дисплей приводився в дію за допомогою архітектури розділеного екрану, в якій відображення мультиплексується як два роздільних 120 строчних дисплея. Драйвери з 160 виходами на стрічковому носієві, розташовані на окремих друкарських платах, приєднуються до прозорого дисплея при допомозі

гнучкої сполучної друкарської плати. Аналогічна технологія приміняється для підключення панелі до драйверів рядків. Логічні схеми, перетворювачі постійної напруги і схеми, необхідні для формування імпульсів напруги для управління TFEL панелью, розташовані на окремій друкарській платі, підключеній до плати драйверів плоским кабелем. На рисунку 2.6. показаний зовнішній вигляд цієї панелі. Характер зміни світло пропускання цієї панелі показаний на рисунку 2.7.

Рис 2.6. Зовнішній вигляд прозорого електролюмінісцентного дисплея QVGA[7]. Рис.2.7 Спектр пропускання дисплея QVGA [7]


Були класифіковано три основні типи технологічного процесу люмінофорів: стандартний (розсіюючий), з середнім розсіюванням і без розсіювання. У таблицю зведені основні оптичні властивості, отримані з трьома різними типами рецептур люмінофорів ZnS:Mn, реалізованих в QVGA дисплеях.

Класифіковано три основні типи технологічного процесу люмінофорів: стандартний (розсіюючий), з середнім розсіюванням і без розсіювання. У таблицю зведені основні оптичні властивості, отримані з трьома різними типами рецептур люмінофорів ZnS:Mn, реалізованих в QVGA дисплеях. Таблиця ілюструє значне поліпшення пропускання для люмінофора без розсіювання по відношенню до стандартної технології (84% проти 75%). Подальше поліпшення загального світло пропускання може бути досягнуте за допомогою анти відбивного покриття на обох зовнішніх поверхнях стекол.

Таблиця 2 . Оптичні параметри прозорого ЕЛ дисплея з трьома рецептурами люмінофора на частоті 247 Гц.

Це може додати близько 7,5% до світло пропускання. Новий технологічний процес без розсіювання світла також зменшив дифузійне віддзеркалення (0,3% проти 1,7%) і розсіяне світло від пікселів, що світяться (половина довжини ореолу зменшена з 20 до 15 пікселів). Проте, існує деяка втрата яскравості щодо стандартної технології (109 кд/м2 проти 156 кд/м2). Проте, завдяки зменшеному віддзеркаленню, відносний контраст при сильному засвіченні на рівні освітленості 50 000 лк покращуваний з 1,6 : 1 до 3,1 : 1. Графік залежності відносного контрасту при яскравому зовнішньому освітленні показаний на рисунку 2.8. Відносний контраст (CR) понад 2 : 1 є легко розбірливим, а CR понад 3 : 1 є дуже зручним для прочитування буквенноцифрових знаків. Для зовнішніх застосувань найбільш важливим максимально можливе зменшення дифузних віддзеркалень. Як вже згадувалося, подальше поліпшення може бути досягнуте при допомозі антивідбивних покриттів на зовнішніх поверхнях[5,6,7].

Рис. 2.8. Відносний контраст (CR)при високій зовнішній освітленості для прозорих дисплеїв ЕЛ з трьома рецептурами люмінофорів.