Смекни!
smekni.com

Функциональные устройства телекоммуникаций (стр. 2 из 3)

Постоянную времени

можно определить из выражения

(1.39)

где

и
— постоянные времени входной и выходной цепей соответственно.

Эти постоянные времени определяются по формулам

(1.40)

(1.41)

где С0 — эквивалентная входная емкость каскада,

Сн— емкость нагрузки.

Эквивалентная входная емкость каскада включает емкость перехода база — эмиттер

и пересчитанную на вход емкость перехода база — коллектор Ск :

(1.42)

С0=5,3 нФ;

=0,7 мкс;
=0,5 мкс;

= 0,9 мкс.

fВ=180 кГц.

Определим частотные искажения в области верхних частот

(1.40)

МВ=0,013

и сравним их с заданным значением М. Т.к. условие выполняется, т.е. МВ(дБ)<М(дБ), следовательно расчет произведен верно.


Контрольное задание №2

тип схемы: 7;

тип транзистора: p-n-p - КТ363Б

Выпишем основные параметры заданных транзисторов:

КТ363Б
h21Эmin 40
h21Эmax 120
|h21Э| 15
fизм, МГц 100
τK, пс 5
CK, пФ 2

Eг=1мВ; fc=10кГц; Rг=1кОм; Rн=1кОм; Сн=100пФ; Ср2=10мкФ.

Принципиальная схема анализируемого каскада с подключенными к ней источником сигнала и нагрузкой имеет вид:

Рассчитаем режим работы транзисторов по постоянному току, пусть Еп=10 В.

Расчет схемы по постоянному току проводится в следующем порядке. Рассчитаем ток делителя в базовых цепях транзисторов:

(2.1)

Определить потенциалы баз транзисторов:

(2.2)

(2.3)

Найдем потенциалы эмиттеров транзисторов:

(2.5)

(2.6)

Напряжение U0БЭвыбирается в интервале 0.5...0,7 В для кремниевых транзисторов, выберем U0БЭ=0,5В.

Рассчитаем ток в резисторе, подключенном к эмиттеру первого транзистора:

(2.7)

Рассчитаем ток коллектора в рабочей точке, для этого найдем сначала найдем среднее значение коэффициента передачи тока:


(2.8)

h21Э=69,

тогда:

(2.9)

(2.10)

Определим напряжение на коллекторе в рабочей точке:

(2.11)

(2.12)

По результатам расчета статического режима определяются параметры моделей первого и второго транзисторов:

Выходная проводимость определяется как

(2.13)

h221=1,3*10-5 См, h222=1,2*10-5 См.


Здесь UA— напряжение Эрли, равное 100... 200 В у транзисторов типа n-р-n. Примем UA=100В.

Предельная частота усиления транзистора по току определяется по единичной частоте усиления fТ:

(2.14)

Граничная частота fТ находится по формуле:

(2.15)

fТ1,2=1,5 ГГц;

=22 МГц.

Объемное сопротивление области базы rБ можно определить из постоянной времени τК коллекторного перехода транзистора, приводимой в справочниках:

(2.16)

rБ1,2=2,5 Ом.

Дифференциальное сопротивление эмиттерного перехода определяется по формуле:

(2.17)

rБ’Э1=2,2 кОм, rБ’Э2=2,2 кОм.

где

дифференциальное сопротивление эмиттера;

0,026 мВ — температурный потенциал при Т= 300 К;

m — поправочный коэффициент, принимаемый примерно равным 1.5 для кремниевых транзисторов.

rЭ1=31 Ом, rЭ2=31 Ом.

Емкость эмиттерного перехода равна:

(2.18)

СБ’Э1=3,4 пФ; СБ’Э2=3,3 пФ

Определим коэффициент передачи по напряжению, входное и выходное сопротивление оконечного каскада, построенного по схеме с ОЭ.

Входное сопротивление транзистора VT2:

h112=rБ2+rБЭ2=2,2 кОм (2.19)

Входное сопротивление каскада:

(2.20)

Выходное сопротивление каскада:


(2.21)

Сопротивление нагрузки каскадапо переменному току:

(2.22)

Коэффициент передачи каскада по напряжению:

(2.23)

KU2=16

Определим коэффициент передачи по напряжению, сквозной коэффициент передачи по напряжению, входное и выходное сопротивления входного каскада. При этом необходимо учитывать, что нагрузкой входного каскада является входное сопротивление оконечного каскада. Входной каскад построен по схеме с ОЭ.

Входное сопротивление транзистора VT2:

h111=rБ1+rБЭ1=2,2 кОм (2.24)

Входное сопротивление каскада:

(2.25)

Выходное сопротивление каскада:

(2.26)

(2.27)

Сопротивление нагрузки каскадапо переменному току:

(2.28)

Коэффициент передачи каскада по напряжению:

(2.29)

KU1=32

Сквозной коэффициент передачи по напряжению:

(2.30)

Коэффициент передачи по напряжению всего усилителя определяется по формуле

KU= KU1* KU2=500 (2.31)

Сквозной коэффициент передачи по напряжению KE всего усилителя определяется аналогично:


KЕ= KЕ1* KU2=310 (2.32)

Входное сопротивление усилителя определяется входным сопротивлением входного каскада, а выходное – выходным сопротивлением оконечного каскада.

Постоянные времени в области нижних частот, связанные с разделительными конденсаторами Ср1, Ср2, определяются по формулам:

τН1=Ср1*(Rг+ RВХ1)=13 мс (2.33)

τН2=Ср2*(RВЫХ2+ Rн)=20 мс (2.34)

Постоянная времени в области нижних частот, связанная с блокировочным конденсатором Сэ, определяется по формуле:

τН3=СэRэ=30 мс (2.35)

Эквивалентная постоянная времени в области нижних частот равна

(2.36)

где τНi,τНj - эквивалентные постоянные времени каскада в области нижних частот связанные с i-м разделительным и j-м блокировочным и конденсаторами соответственно. τН=10 мс

Нижняя частота среза определяется по формуле:


(2.37)

В усилителе имеются три постоянных времени в области верхних частот, связанные с входными цепями входного и оконечного транзисторов и емкостью нагрузки:

τВi=Сi*Ri, (2.38)

где Сi – емкость i-го узла относительно общего провода,

Ri – эквивалентное сопротивление i-го узла относительно общего провода.