где
- относительная диэлектрическая проницаемость полупроводника; го - диэлектрическая проницаемость вакуума; - площадь перехода; - ширина слоя, или, точнее, ширина слоя объемного заряда.4.5.3 Режимы работы фотодиода
В зависимости от схемы подключения ФД к электрической цепи различают два режима работы ФД: фотогальванический и фотодиодный. Параметры и характеристики ФД в этих режимах имеют некоторые отличия. Режим включения, когда внешний источник питания смещает
-переход ФД в обратном направлении, называется фотодиодным. Принципиальная схема включения диода в этом режиме представлена на рис. 2.21. Схема характеризуется наличием источника ЭДС С/Ип, напряжение которого приложено к диоду в обратном направлении и нагрузочным резистором с которогоснимается выходной сигнал
При включении ФД в обратном смещенииток, протекающий через фотодиод-, равен
где
- напряжение, приложенное кФД (с учетом знака);
- фототок(см.(2.46)). При достаточно большом обратном напряжении
экспоненциальный член становится достаточно малым и тогдаОписать электрическую схему (рис. 2.21) можно следующим соотношением:
Воспользовавшись формулами (2.51)—(2.53), легко построить нагрузочную прямую на графике семейства вольт-амперных характеристик ФД (см. рис. 2.22). Рабочая точка определяется пересечением нагрузочной прямой и соответствующей данному потоку ветви характеристики ФД. Максимальный поток излучения, который можно зарегестрировать при заданных
определяется пересечением нагрузочной кривой с осью ординат. В аналитической форме это можно записать следующим образом:где
. - токовая чувствительность ФД; - максимальный поток излуче-ния, который может зарегистрировать ФД в фотодиодном режиме.
Необходимо отметить, что фотодиодный режим работы является линейным, так как ток, протекающий через ФД
и напряжение на нагрузке прямопропорциональны потоку излучения.Если ФД не имеет внешнего источника питания, он работает как преобразователь энергии светового излучения в электрическую и эквивалентен генератору, характеризующемуся напряжением холостого хода
или током короткого замыкания Схема включения ФД в фотогальваническом режиме приведена на рис. 2.23. Вольт-амперные характеристики для диода, включенного в фотогальваническом режиме, приведены на рис. 2.24. Чтобы получить основные соотношения для фотогальванического режима, вспомним формулу (2.46) для р-п-перехода под действиием потока излучения, которую можно переписать в следующем виде:где
- напряжение ненагруженного ФД, которое фактически равно изменению потенциала барьера -перехода Таким образом, получаемИз формулы (2.56) следует, что пои малой облученности, т.е. пр!
зависимость напряжения на ФД от фототока, а следовательно, и от потока излучения близка к линейнойПри больших значениях облученности, когда
, эта зависимость - логарифмическаяНагрузочная прямая для фотогальванического
режима описывается формулой5.1 Виды генерации оптического излучения
Можно выделить два основных вида: генерация в результате нагревания, иначе говоря, тепловое излучение; люминесцентное излучение.
Тепловое излучение присуще всем нагретым телам и хорошо изучено. Спектр излучения (светимость) физического тела, нагретого до определенной температуры описывается формулой Планка
Анализ формулы (3.1) показывает, что при температуре, близкой к комнатной, или при незначительном нагреве спектр излучения тела практически целиком лежит в ИК-области. При нагреве тела до значительной температуры (1000 К) происходит все большее смещение максимума теплового излучения в видимую область спектра при увеличении светимости.
Типичным примером теплового излучателя может служить электрическая лампа накаливания. Однако такие недостатки, как высокая инерционность, низкий КПД, отсутствие направленности, очень широкий спектр излучения, а также хрупкость и несовместимость с технологией ИС привели к тому, что тепловые излучатели находят ограниченное применение в опто-электронике, обычно в некоторых типах оптронов и оптронных схем.
Основу современной оптоэлектроники составляют люминесцентные генераторы оптического излучения. Явление люминесценции известно уже более полувека, однако лишь в последние два десятилетия наблюдалось бурное развитие приборов на ее основе. Существует несколько видов люминесценции, из которых наиболее важными представляются электро- и фотолюминесценция. В первом случае возбуждение атомов вещества происходит под действием электрического поля, а во втором - путем поглощения более коротковолнового оптического излучения. Электролюминесценцию можно, в свою очередь, разделить на два вида: катодолюминесценция, которая вызывается свечением люминофора под действием ускоренных в электрическом поле заряженных частиц и широко применяется в различных типах вакуумных и газоразрядных приборов; и инжекционная люминесценция, происходящая за счет излучения фотонов электронами при изменении их энергетического состояния, вызванного протеканием электрического тока. В этом разделе будет рассмотрена инжекционная люминесценция и приборы, работающие на ее основе, такие, как светодиоды и инжекционные лазеры.
5.2 Светодиоды
Светодиодом или светоизлучающим диодом (СИД) называется полупроводниковый прибор с
переходом, протекание тока через который вызывает интенсивное некогерентное излучение.5.2.1 Основные параметры и характеристики светодиодов
Параметры и характеристики СИД можно разбить на две группы: к первой отнести величины, характеризующие светодиод как генератор оптического излучения, а ко второй - параметры, определяющие рабочие режимы. Кроме того, следует помнить, что в зависимости от назначения, например для индикаторных светодиодов, ИК-диодов, излучательных диодов для ВОЛС, может несколько изменяться система параметров и характеристик, приводимых в паспорте прибора. Рассмотрим последовательно основные параметры и характеристики СИД.