Смекни!
smekni.com

Характеристики компонентов волоконно-оптических систем передачи (стр. 1 из 11)

1. Оптические кабели и разъемы, их конструкции и параметры.

1.1 ТЕХНИЧЕСКАЯ РЕАЛИЗАЦИЯ ВОЛС

Элементную базу ВОЛС составляют волоконно-оптические кабели, передающие и приемные оконечные устройства (модули), оптические соединители, разветвители, коммутаторы. Именно из этих аппаратурных средств создаются системы оптической связи. Но каждый из названных элементов представляет собой сложное.

1. Это обратное рассеяние, в особенности рассеяние Мандельштама — Бриллюэна, позитивно используется как прецизионный «инструмент» исследования характеристик световода вдоль его длины устройство, в свою очередь состоящее из нескольких комплектующих элементов, свойства и характеристики которых в конечном счете определяют возможности ВОЛС. Эти оптические, опто-, микроэлектронные, оптико-механические элементы (изделия, материалы) также входят в элементную базу ВОЛС.

Оптические волокна. Определяющими в технике ВОЛС являются кварцевые двухслойные волокна трех основных разновидностей: многомодовые ступенчатые и градиентные, а также одномо-довые (рис. 1). В одномодовых волокнах закон изменения показателя преломления внутри сердцевины неважен, поэтому эти волокна, как правило, близки к ступенчатым. Показанный на


Рис. 1 Геометрия и профиль изменения показателя преломления кварцевых двухслойных многомодовых ступенчатых (а), градиентных (б), одномодовых (в) волокон.

Геометрия сердцевины и числовые апертуры кварц-полимерных (г), из многокомпонентных стекол (д) и полимерных (е) световодов рисунке третий наружный слой в механизме светопередачи участия не принимает.


Рис. 2 Ход световых лучей в оптических волокнах с разными коэффициентами преломления

Волоконно-оптический кабель (ВОК). Наиболее широкое распространение получили четыре основные конструкции ВОК (рис. 9.9): повивная, в которой волоконные модули обвиваются вокруг центрального упрочняющего элемента; кабели пучковой скрутки, в которых навивке подвергаются группы (пучки) модулей, предварительно уложенные в трубки; кабели с профильным упрочняющим элементом, в которых волоконные модули свободно укладываются в винтообразные пазы упрочняющего элемента; ленточные кабели, в которых скручиванию подвергаются ленты, содержащие несколько волокон и набранные стопой. Первые две конструкции являются классическими, заимствованными из электротехнической практики.


Рис. 3. Основные разновидности волоконно-оптических кабелей: повивная конструкция (а), кабели пучковой скрутки (б), с профильным упрочняющим элементом (б), ленточный (г): 1 — волоконно-оптический модуль; 2 — упрочняющий элемент; З — защитная оболочка

Независимо от конкретной конструкции основными элементами кабеля (кроме волоконных модулей) являются (на рис. 3 показаны упрощенные варианты): упрочняющие элементы, обычно полимерные, иногда металлические, служащие для придания кабелю необходимой разрывной прочности и разгрузки волокон от растяжения; наружные защитные покрытия, нередко многооболочечные, предохраняющие от проникновения влаги, паров вредных веществ и от внешних механических воздействий; армирующие элементы, повышающие сопротивляемость кабеля радиальным механическим воздействиям; изолированные металлические провода, монтируемые в кабеле наряду с оптическими волокнами и обеспечивающие электропитание ретрансляторов на линии связи; внутренние разделительные слои и ленты, скрепляющие отдельные группы элементов и уменьшающие давление различных элементов конструкции друг на друга; гидрофобный заполнитель, ослабляющий вредное воздействие влаги на оптические волокна.

Обширные исследования световодных кабелей, создание огромного числа разнообразных конструкций, более -чем 15-летний опыт производства и применения этих изделий — все это не привело, однако, к выработке окончательных оптимизированных решений. Появление микронзгибов волокна в составе кабеля, терморассогласование волокна и кабельных материалов, гарантированная защита от воздействия влаги на волокно — эти проблемы по-прежнему далеки от полного разрешения.

Передающие и приемные модули. Назначение передающего модуля (рис. 4) состоит в преобразовании входной информации в виде, электрических сигналов в оптические сигналы, согласованные с каналом передачи (волоконным световодом); при этом модуль должен надежно функционировать при всех возможных изменениях внешних воздействующих факторов (температуры, -влажности, вибрации, колебаний напряжений питания и т. п.).

В устройстве возбуждения сигнал, поступающий через входной электрический разъем, преобразуется в мощные импульсы накачки, превышающие порог генерации лазера. Это устройство может осуществлять и некоторые дополнительные функции: задание постоянного смещения (предпороговая подпитка); придание импульсу накачки специальной формы, обеспечивающей форсирование начала и обрыва генерации; изменение длительности импульса возбуждения по сравнению с поступающим импульсом (например,, для улучшения теплового режима работы лазера) и т. п. В устройство возбуждения могут быть введены и блоки, выполняющие


Рис.4. Структурные схемы:

а — передающего модуля (1 — входной электрический соединитель; 2 — схема возбуждения; 3 — схема обратной связи; 4 — оптическое устройство (

— светоделитель;
— согласующие элементы;
—оптический соединитель); 5 — термоэлектрический охладитель (
— активный элемент;
—схема управления;
—датчик температуры); 6 — корпус); 6— приемного модуля (1 — оптический соединитель; 2— усилитель (включая предварительный усилитель
); 3 — схема оптимальной (квазиоптимальной) обработки (фильтр); 4— схема

принятия решения; б — электрический соединитель; в — корпус)

электрические информационные цепи;
цепи питания;
оптические сигналы

совершенно иные функции: аналого-цифровое преобразование сигнала, кодирование, мультиплексирование и др. В этом случае передающий модуль фактически превращается в оконечное устройство линии передачи информации; -его описание выходит за рамки данного рассмотрения. Устройство возбуждения выполняется в виде интегральной монолитной или гибридной микросхемы.

«Центром» передающего модуля является излучатель — именно в нем происходит оптоэлектронное преобразование. Основные излучатели ВОЛС — полупроводниковые инжекционные гетеролазеры на основе соединений

(для диапазона длин волн 0,8 ... 0,9 мкм) и
(1,3... 1,6 мкм). Используются практически все структуры, предназначенные для получения низкого тока накачки и высокой степени когерентности: полосковые лазеры, лазеры с зарощенной структурой, с распределенной обратной связью и сдвоенные лазеры со сколото-связанными резонаторами. Модуль может содержать одновременно несколько лазеров, излучающих на разных длинах волн (для целей спектрального мультиплексирования), в этом случае структурная схема соответственно видоизменяется и усложняется.

Излучение лазера поступает на выходное оптическое устройство, включающее элементы согласования (селективные фильтры или смесители мод; элементы, преобразующие диаграмму направленности излучения к оптимальному для ввода в волокно виду) и оптический соединитель. Часть светового потока лазера с помощью светоделителя (или путем использования внеапертурного излучения) направляется на фотоприемник обратной связи, который через микроэлектронное устройство управления так воздействует на устройство возбуждения к на лазер, чтобы осуществлялась компенсация температурных, деградационных и других изменений мощности на выходе модуля. Для ослабления температурных эффектов в модуль вводится термоэлектрический охладитель, включающий измеритель и схему автоматической регулировки температуры.

Важнейшей частью модуля является корпус, выполняемый обычно в виде плоской прямоугольной металлической коробочки с электрическим и оптическим соединителями на противоположных торцах. В тех случаях, когда предполагается монтаж модуля непосредственно на печатную плату, электрический соединитель заменяется системой выводов.

Для коротких ВОЛС с невысокими скоростями передачи информации удобно вместо лазера использовать светодиоды: это повышает надежность и долговечность передающего модуля, снижает его стоимость, резко упрощает структурную схему. В этом случае термоэлектрические охладители не нужны, исключается также цепь фоточувствительной обратной связи.

Передающие модули на основе полупроводниковых инжекционных излучателей (лазеров и светодиодов) характеризуются всеми достоинствами, присущими этим приборам: малыми габаритными размерами, долговечностью и надежностью, экономичностью, малыми питающими напряжениями, простотой модуляции.