Смекни!
smekni.com

Цифровая схемотехника (стр. 6 из 12)

В комбинационных устройствах значения выходных сигналов в какой-либо момент времени однозначно определяются значениями входных сигналов в этот же момент времени. Поэтому можно считать, что работа таких устройств не зависит от времени. Их ещё называют устройствами «без памяти», однотактными устройствами или устройствами однотактного действия. В теории конечных автоматов комбинационные устройства называют «примитивными конечными автоматами».

В последовательностных устройствах значения выходных сигналов (выходные сигналы) зависят от значений входных сигналов не только в рассматриваемый момент времени, но и от значений входных сигналов в предыдущие моменты времени. Поэтому такие устройства называют устройствами с «памятью», многотактными устройствами, а в теории конечных автоматов, просто − конечным автоматом (не тривиальным).

При рассмотрении учебного материала, в дальнейшем, за основную примем именно эту классификацию, так как методы построения (синтеза) и процессы функционирования названных устройств существенно различаются.

Заканчивая изложение вопросов классификации, отметим, что приведённый перечень классификационных признаков и перечень наименований микроэлектронных изделий (микросхем) далеко не исчерпывающий. В дальнейшем, по мере необходимости, этот перечень мы дополним.

1.3. Логические элементы

Логические элементы относятся к простейшим комбинационным «устройствам», имеющим один выход и один-два входа. Своё название они получили по той причине, что их функционирование полностью можно описать логическими функциями и в частности булевыми функциями.

Как и в формальной логике, все высказывания могут быть истинными либо ложными, так и логические функции могут принимать только два условных значения: логической единицы (лог.1) - «истина» и логического нуля (лог.0) - «ложь».

При описании работы логических элементов выходным сигналам ставят в однозначное соответствие функции, а входным сигналам-аргументы этих функций. Таким образом, и функции, и аргументы функций, а также входные и выходные сигналы логических элементов являются двоичными. Если пренебречь реальным временем перехода логического элемента из одного состояния (состояния лог.1) в другое (состояние лог.0), то ни аргументы и ни функции не будут зависеть от фактора времени - переменной времени. Правила получения и преобразования логических выражений рассматривает алгебра логики или булева алгебра.

Основными логическими функциями в алгебре логики принято считать функции от двух аргументов. Им даны названия, введены логические символы для обозначения соответствующих логических операций при их записи в алгебраической форме, а также эти символы используются в условных графических обозначениях (УГО) логических элементов в схемной документации.

Прежде чем рассматривать непосредственно виды логических элементов, рассмотрим вначале общий вопрос о системе обозначений микросхем, содержащих логические элементы. Такие микросхемы относятся к микросхемам малой степени интеграции.

1.3.1. Система условных цифробуквенных обозначений ИМС логических элементов

В отечественной технической литературе, а также при маркировке ИМС отечественного производства, при их изготовлении на заводах-изготовителях, принята 4-х элементная форма обозначений микросхем (рис.1.1).

Первым элементом в обозначении является цифра, которой указывается группа конструктивно-технологического исполнения ИС. Эта цифра может принимать следующие значения:

1, 5, 6, 7 - соответствуют полупроводниковым ИС. Причём цифра 7 используется для обозначения только бескорпусных ИМС;

2, 4, 8 - это гибридные микросхемы;

3 - прочие микросхемы, в том числе, и плёночные.

Перед первым элементом обозначения может стоять буква или две буквы (русского алфавита), они не обязательны, но ими обозначают тип и материал корпуса микросхемы и возможности её применения. Например, буквой К обозначают микросхемы широкого применения в пластмассовом корпусе первого типа. Есть микросхемы специального применения, например, для устройств, эксплуатируемых в условиях тропического климата.

Второй элемент- 2 или 3 цифры, ими обозначают порядковый номерсерии микросхем. Всё множество выпускаемых отечественной промышленностью микросхем делится на серии.Серия ИМС - это совокупность ИС единого конструктивно-технологического исполнения, выполняющих различные функции и предназначенных для совместного применения.

Третьимэлементом в обозначении являются две русскиебуквы, первая из которых обозначает подгруппу ИС по функциональному назначению, а вторая буква соответствует виду ИС также по функциональному назначению микросхемы. Например, первая буква Л «говорит», что это ИС логических элементов (подгруппа логика), вторая буква А соответствует логическим элементам вида И-НЕ. В табл.1.2 приведены наиболее употребительные буквенные коды видов ИС по выполняемым функциям.

И, наконец, 4-мэлементом в обозначениях микросхем являются одна или двецифры, обозначающие условный номер микросхемы в рассматриваемой серии. Так, приведённый на рис.1.1 пример обозначения соответствует обозначению полупроводниковой микросхемы серии К155, широкого применения, в пластмассовом корпусе 1-го типа. В её состав входят 4 двухвходовых логических элементов вида И-НЕ (2И-НЕ).

Обычно четвёртым элементом в обозначении ИМС «зашифровывается» порядковый номер модификации элементов одного вида, различающихся числом входов и способом «организации» выхода.

Кроме названных обозначений, согласно ГОСТ 2.743-91 «Условные графические обозначения в электрических схемах. Элементы цифровой техники», используются другие двухбуквенные коды для обозначения функционального назначения микросхем, например: ИД - декодеры- демультиплексоры, дешифраторы, ИР - регистры, КП - коммутаторы дискретных сигналов и так далее. В частности, буква И соответствует подгруппе микросхем, используемых для построения вычислительных цифровых устройств.

Различные серии ИС отличаются количеством микросхем и их номенклатурой (типономиналами). Типономинал ИС - конкретное условное обозначение, содержащее основные сведения о микросхеме. В процессе развития технологии количество типономиналов ИМС конкретной серии может увеличиваться.

Среди серий микросхем наиболее функционально развиты ИМС транзисторно-транзисторной логики (ТТЛ и ТТЛш). Эти серии характеризуются широкой номенклатурой ИС, поэтому изложение учебного материала будем в основном иллюстрировать примерами этих микросхем.

В указанном выше ГОСТе содержатся также условные графические обозначения логических элементов и приведены правила формирования УГО более сложных логических элементов и модулей. Поэтому следует, прежде всего, ознакомиться с указанным ГОСТом.

Таблица 1.2

Вид ИС Обозначение
Элементы И-НЕ ЛА
Элементы И-НЕ /ИЛИ-НЕ ЛБ
Расширители по ИЛИ ЛД
Элементы ИЛИ-НЕ ЛЕ
Элементы И ЛИ
Элем. И-ИЛИ-НЕ/И-ИЛИ ЛК
Элементы ИЛИ ЛЛ
Элементы ИЛИ-НЕ/ИЛИ ЛМ
Элементы НЕ ЛН
Прочие элементы ЛП
Элементы И-ИЛИ-НЕ ЛР
Элементы И-ИЛИ ЛС

1.3.2. Применение булевой алгебры для описания

логических элементов и устройств

Как уже было отмечено выше, функционирование логических элементов можно описать логическими (булевыми) функциями. В свою очередь логические функции можно определить (задать), перечислив все условия, при которых функция принимает значение лог.1, т.е. по условиям истинности, так и по условиям ложности (значения лог.0). Аналогично, рассматривая работу логического (какого-либо) элемента, можно перечислить все условия, при которых на выходе появляется сигнал лог.1, либо условия, когда на выходе элемента будет присутствовать сигнал лог.0. В этом заключается принцип дуальности (двойственности) в описании логических устройств.

В технике, при описании работы различных устройств, широко используется понятие «активного», в противоположность ему, «неактивного» значения какого-либо сигнала. При этом под активным значением (уровнем) сигнала понимается такое действие, которое вызывает на выходе устройства желаемое действие или, по-другому, устройство оказывает активные действия на внешние устройства. Наоборот, неактивные действия оказывают пассивное действие на внешние устройства. Так, в логике обычно акцентируют внимание на истинности высказываний, поэтому истинность высказываний следует считать по умолчанию их активным значением. Аналогично, при описании технических устройств можно акцентировать внимание на условиях их «срабатывания» либо на условиях «несрабатывания».

Соглашения, при которых сигнал лог.1 считается активным, называют соглашениями «положительной» логики. Наоборот, когда за активное значение принимается уровень лог.0, такие соглашения называют соглашениями «отрицательной» логики. Как правило, за сигнал лог.1 принимается более «высокий» уровень, а за сигнал лог.0 «низкий» уровень сигналов. Например, при использовании ИМС ТТЛ сигналом лог.1 считается напряжение не менее +2,4 В, а сигналом лог.0 - напряжение больше нуля, но не больше 0,4 В. Это - стандартные уровни сигналов в устройствах на ИМС ТТЛ.