а – структурна схема; б, в – часові діаграми.
Із подібності трикутників на діаграмі (рис. 5, б) виходить, що часовий інтервал можна виразити через вимірювану напругу :
, (7.14)де
- крутість лінійно-змінної напруги ; - її максимальне значення; - час робочого ходу ЛЗН . , (7.15)де
- дискретність вимірювання напруги .Відрізняють циклічний і ациклічний режими перетворення напруги
. У циклічному режимі максимальне значення напруги не залежить від значення вимірюваної напруги , воно підтримується незмінним в усьому діапазоні вимірювань. У цьому разі часові інтервали часу відновлення , або зворотного ходу, та робочого ходу ГЛЗН є величинами постійними. Сумарний інтервал визначає час перетворення та швидкодію АЦП. Ациклічному режиму відповідає зв'язок з виходу компаратора на вхід ГЛЗН (пунктир на рис. 5, а). У такому режимі розгортка зразкової ЛЗН закінчується в момент часу . Ділянка відновлення початкового положення ГЛЗН показана пунктиром на рис. 5, б.Основними джерелами похибок розглянутого ЦВ є: запізнення початку розгортки, нестабільність крутості і нелінійність ЛЗН
, поріг спрацювання компаратора і похибка квантування. Нестабільність опорної частоти призводить до похибки, значно меншої за вказані похибки, і її можна не враховувати.Запізнення початку розгортки ЛЗН
відносно сигналу Пуск на величину викликається інерційністю ГЛЗН, внаслідок чого час відкритого положення часового селектора перевищує інтервал на величину і в блок індикації ЦВ потрапляє додаткова кількість імпульсів , що й обумовлює похибку вимірювання. Для її вилучення в схему ЦВ вводиться інший компаратор.У цій схемі сигнал Пуск з блока керування подається тільки на запуск ГЛЗН у момент часу
, його вихідна напруга подається на входи обох компараторів. Першим спрацьовує компаратор 1 у момент часу досягнення напругою нульового значення і на його виході формується сигнал Старт, яким відкривається часовий селектор. Компаратор 2, як і в схемі (рис. 5, а), формує в момент часу сигнал Стоп, який закриває часовий селектор.