Вычитание импульса из последовательности ЗГ приведет к увеличению периода регулирования на
:что приведет к сдвигу на отставание временного положения фронта синхросигнала относительно нулевой фазы ОС на величину
-
что соответствует сдвигу по фазе опорного сигнала на дискрет, равный
.В качестве фазируемых ГОС могут быть использованы генераторы ударного возбуждения, поочередно коммутируемые синхросигналом, генераторы прямоугольных импульсов, в том числе генераторы релаксационного типа. Необходимость фазирования внешним сигналом, обеспечения малой длительности переходных процессов, простоты реализации предполагают использование ГОС с невысокими требованиями к их стабильности.
Требования к стабильности частоты генераторов. Определим требования к стабильности ГОС.
Пусть
определяется выражением 5. Тогда на временном интервале, равном ГОС работает в режиме свободных колебаний. При этом “набег” фазы ОС относительно ЗГ обусловленный взаимной нестабильностью частот и растет по линейному закону.Периодическая функция
может быть определена следующим образом: , при , (7)где
- взаимная нестабильность частот и . При высокой стабильности задающего генератора величина определяет относительную нестабильность ГОС.Максимальный набег фазы на интервале периода регулирования составит величину
Среднее значение процесса
и дисперсию найдем усреднением по времени. ; (8) . (9)Среднеквадратическое отклонение “набега” фазы:
. (10)Максимальное отклонение относительно среднего значения равно
Таким образом, максимальное отклонение набега фазы относительно среднего значения равно
Интенсивность флуктуаций фазы относительно среднего значения в отсутствие шумов на входе определяет ошибку синхронизации в системе, построенной на основе анализируемого цифрового управляемого генератора, поскольку в стационарном режиме система отслеживает среднее значение.
Известно, что максимальная ошибка синхронизации ЦСФС, обусловленная дискретностью коррекции фазы в отсутствие шумов на входе равна величине дискрета подстройки фазы (2
).Приняв величину
за максимально допустимое отклонение относительно среднего значения: /m,определим допустимую нестабильность частоты ГОС
,где
– относительная нестабильность частот ЗГ и ГОС.Выполнение этого условия позволит при расчете динамической ошибки слежения учитывать нестабильность задающего генератора.
Расчетные величины относительной нестабильности представлены в табл.1. Выполнение этого условия позволит в формуле для расчета динамической ошибки слежения учитывать нестабильность задающего генератора.
Результаты расчета показывают, что приемлемая точность может быть достигнута при относительной нестабильности
, что может быть обеспечено при использовании LC-генераторов.Если частота эталонного сигнала меньше предельной частоты переключения элементной базы, цифровой управляемый генератор может быть выполнен по комбинированной схеме с использованием делителя. При этом увеличением дискрета подстройки снижаются требования к стабильности ГОС. Для сохранения заданной величины дискрета подстройки пропорционально увеличивается частота ЗГ и ГОС и производится последующее деление опорного сигнала до частоты эталонного.
Таким образом, использование метода временной трансформации позволяет значительно (в десятки раз) расширить частотный диапазон работы ЦСФС.
Таблица 1. Зависимость допустимых значений относительной нестабильности синхронизируемых генераторов от величины дискрета подстройки по фазе.
№п/п | ||
1 | 3*10-5 | |
2 | 2*10-4 | |
3 | 4,8*10-4 | |
4 | 1,9*10-3 |
Примеры реализации цифровых следящих систем
В качестве примеров рассмотрим схемы цифровых систем ФАПЧ с астатизмом второго порядка, реализующие методы дискретного управления фазой и дискретного управления частотой.
Схема ЦФАПЧ с дискретным управлением фазой приведена на рис.5.
Рис.5. Схема ФАПЧ с дискретным управлением фазой.
Система состоит из двух колец регулирования: пропорционального и интегрирующего, Интегрирующее включает реверсивные счетчики РСч1 и РСч2 и преобразователь код-частота. Расстройка между частотой входного и опорного сигналов приводит к преобладанию импульсов счетно - импульсного кода на одном из выходов ЦФД. В результате этого реверсивный счетчик УУ будет переполняться по одному из входов и на вход интегратора РСч1, РСч2 будут поступать импульсы переполнения. В интеграторе накопится код, пропорциональный частотной расстройке. Этот код является управляющим для преобразователя код-частота. В результате на выходе ПКЧ сформируется последовательность импульсов с постоянной частотой, пропорциональной частотной расстройке. Имульсы поступают на УДИ и осуществляют коррекцию частоты опорного сигнала, равную в установившемся режиме первоначальной частотной расстройке. В качестве ПКЧ может быть использован цифровой синтезатор частот с суммированием импульсных последовательностей (рис.6).
Рис.6. Схема цифрового синтезатора частот с суммированием импульных последовательностей: ДЦ – дифференцирующая цепь.
Цифровая схема ФАПЧ с дискретным управлением частотой приведена на рис.7.
Рис.7. Схема ФАПЧ с дискретным управлением частотой
Сумматор кодов содержит полный код частоты, который управляет частотой цифрового синтезатора частоты. Реверсивный счетчик 2 постоянно подключен к сумматору кодов, а РС 3 периодически подключается к сумматору и его код переписывается в сумматор, а затем сбрасывается (запись и сброс производится импульсом с делителя).
Таким образом, информация РС 3 обновляется каждый период (с частотой регулирования
). Сумматор кодов должен обладать памятью, т. е. является сумматором накапливающего типа.ЛИТЕРАТУРА
1. Коновалов. Г.Ф. Радиоавтоматика: Учебник для вузов. – М.: Высш. шк., 2000.
2. Радиоавтоматика: Учеб. пособие для вузов. / Под ред. В.А. Бесекерского. - М.: Высш. шк., 2005.
3. Первачев С.В. Радиоавтоматика: Учебник для вузов. - М.: Радио и связь, 2002.
4. Цифровые системы фазовой синхронизации / Под ред. М.И. Жодзишского – М.: Радио, 2000.