Смекни!
smekni.com

Четырехполюсники, электрические фильтры (стр. 2 из 6)

Передаточной функцией по напряжению называется отношение выходного напряжения к входному:

Модуль этого отношения представляет собой амплитудно-частотную характеристику (АЧХ), а аргумент – фазо-частотную характеристику (ФЧХ). Эти характеристики являются основными при выборе электрических фильтров.

Амплитудно-частотная характеристика показывает, во сколько раз выходное напряжение меньше (или больше) входного, ФЧХ дает сдвиг фаз между входным и выходным напряжениями.

Определим АЧХ и ФЧХ произвольного 4х-П с известными коэффициентами формы А, нагруженного активным сопротивлением R, Рис.1.4. С этой целью запишем первое уравнение системы (1.1) в следующем виде:


Поскольку коэффициенты формы А, в общем случае, являются комплексными числами, зависящими от частоты, постольку выражение в скобках (1.6) можно записать в алгебраической форме:

где а(ω) – действительная часть;

b(ω) – мнимая часть.

После этого связь входного и выходного напряжений (1.6) можно выразить следующим образом:


Для определения ФЧХ 4х-П за начало отсчета сдвига фаз между входным и выходным напряжениями примем вектор выходного напряжения

, который направим по оси абсцисс, т.е. горизонтально.

При таком выборе начала отсчета положение вектора

на комплексной плоскости целиком определяется величинами а(ω)и b(ω) и их знаками:


Расчет ФЧХ по (1.8) дает сдвиг фаз, выраженный в радианах. Ключ для определения этого угла показан на Рис.1.5:

j

φ

0 +

-j

Рис.1.5. Ключ для определения сдвига фаз между входным и выходным напряжениями

На основании (1.7) комплексная передаточная функция по напряжению произвольного 4х-П с известными коэффициентами формы А и нагруженного активным сопротивлением R, принимает вид:


Модуль передаточной функции 4х-П, т.е. его АЧХ:


Таким образом, по формулам (1.8) и (1.10) можно рассчитать АЧХ и ФЧХ любого 4х-П при известных коэффициентах формы А и нагрузке R.

Пример 1.1. Задана электрическая схема Г-образного 4х-П (Рис.1.6) и его параметры R, L, C. Данный 4х-П подключен к источнику синусоидального напряжения. Необходимо найти формулы для расчета АЧХ и ФЧХ этого 4х-П.

L

1 2

Z1

Z2CR


1’ 2’

Рис.1.6. Электрическая схема г-образного 4х-П, нагруженного активным сопротивлением R

Решение. Комплексные сопротивления плеч 4х-П:

Коэффициенты формы А (1.3):


Комплексная передаточная функция:

Модуль передаточной функции:


где

Фазо-частотная характеристика


Таким образом, при известных значениях R, L, C-элементов по формулам (1.11), (1.12) можно рассчитать и построить графики АЧХ и ФЧХ Г-образного 4х-П, изображенного на Рис.1.6.

1.5 Каскадное соединение четырехполюсников

Рассмотрим так называемое каскадное соединение 4х-П (Рис.1.7), при котором входные зажимы каждого последующего 4х-П присоединяются к выходным зажимам предыдущего.



Рис.1.7. Каскадное соединение 4х-П

Эти два 4х-П, взятые вместе, можно рассматривать как один эквивалентный.

Определим параметры эквивалентного 4х-П через известные параметры первого и второго четырехполюсников.

Пусть заданы матрицы коэффициентов формы А двух каскадно соединенных 4х-П.

Из теории известно, что матрица коэффициентов формы А двух каскадно соединенных 4х-П равна произведению матриц отдельных 4х-П:

Это правило, распространяется на случай каскадного соединения любого числа 4х-П. При этом матрицы, подлежащие перемножению, записываются в порядке следования 4х-П, т.к. умножение матриц не подчиняется переместительному закону.

1.6 Одноэлементые четырехполюсники

Простейшими 4х-П являются одноэлементные 4х-П, состоящие из последовательного (Рис.1.8а) и параллельного (Рис.1.8б) двухполюсника.



Z1 Z2

а) б)

Рис.1.8. Одноэлементный 4х-П

Матрицы коэффициентов формы А одноэлементных 4х-П:

С помощью этих матриц М1 и М2 можно получить коэффициенты формы А любого 4х-П, построенного по лестничной схеме. Для этого необходимо перемножить матрицы М1 и М2 столько раз, сколько раз встречаются параллельный и последовательный 2х-П.

Например, коэффициенты формы А Г-образного 4х-П получаются после перемножения матриц М1 и М2 (см.1.3):

Глава 2. Электрические фильтры нижних частот

2.1 Основные определения и классификация электрических фильтров

Электрическим фильтром называется устройство, при помощи которого электрические колебания разных частот отделяются друг от друга. Электрический фильтр представляет собой пассивный 4х-П, пропускающий сигналы в некоторой полосе частот с малым затуханием, а за пределами этой полосы сигналы проходят в нагрузку с большим затуханием.

Полоса частот, в пределах которой передаточная функция по напряжению (1.10) принимает не менее заданного значения

называется полосой пропускания. Остальная область частот называется полосой задерживания. Частоты, разделяющие эти полосы, называются граничными.

В зависимости от пропускаемого спектра частот фильтры разделяются на:

- фильтры нижних частот (ФНЧ);

- фильтры верхних частот (ФВЧ);

- полосовые фильтры (ПФ);

- заграждающие фильтры (ЗФ).

В зависимости от электрической схемы фильтры разделяются на Г-образные, Т-образные, П-образные и другие.

В зависимости от числа реактивных элементов, входящих в состав фильтра, различают фильтры первого порядка, второго порядка и т.д.

По составу элементов фильтры делятся на активные и пассивные. Активные фильтры содержат источники электрической энергии, а пассивные их не содержат.

По способу обработки сигналов фильтры делятся на аналоговые и цифровые.

В данном курсе рассматриваются только пассивные электрические фильтры, построенные на идеальных линейных R, L, C-элементах.

2.2 Общий принцип действия линейных пассивных электрических фильтров

Рассмотрим электрический фильтр, частотные характеристики которого известны и описываются формулами (1.8)и (1.10).

Пусть на вход данного фильтра поступает сигнал в виде суммы различных частот

Определим структуру сигнала на выходе фильтра.

В силу линейности фильтра, сигнал на выходе будет также представлять сумму синусоидальных напряжений. При этом изменятся амплитуды и начальные фазы составляющих, а частоты составляющих на выходе фильтра одинаковы:

Амплитуды составляющих на выходе определяются передаточной функцией фильтра (1.10):