Сдвиг фаз между входным и выходным напряжениями определяется фазо-частотной характеристикой фильтра (1.8):
В дальнейшем будем полагать, что на вход фильтра подается синусоидальное напряжение, частота которого изменяется от нуля до бесконечности.
2.3 Общая характеристика фильтров нижних частот
Фильтры нижних частот (ФНЧ) предназначены для пропускания в нагрузку сигналов малой частоты и подавления сигналов большой частоты.
Полоса пропускания ФНЧ определяется его граничными частотами:
f1=0 – нижняя граница полосы пропускания;
f2 - верхняя граница полосы пропускания, которая определяется назначением данного конкретного фильтра.
В теории фильтров рассматриваются идеальные и реальные фильтры. Идеальным ФНЧ называется фильтр, передаточная функция которого (1.10) в полосе пропускания равна единице, а за пределами полосы пропускания она равна нулю:
Передаточная функция реального фильтра в полосе пропускания не равна единице, а в полосе задерживания - не равна нулю.
Передаточные функции по напряжению идеального и реального фильтров нижних частот показаны на Рис.2.1.
H(f)
Передаточная функция идеального ФНЧ
Передаточная функция реального ФНЧ
H
1Полоса
пропускания Полоса задерживания
H
22 f
2f
22 f
Рис.2.1. Передаточные функции идеального и реального фильтров нижних частот
Количественную оценку избирательности фильтра целесообразно производить с помощью коэффициента прямоугольности передаточной функции по напряжению или мощности.
Для расчета коэффициента прямоугольности передаточной функции фильтра введем в рассмотрение передаточную функцию по мощности, которую определим следующим образом.
Максимально возможная мощность, которая может быть выделена в нагрузке в случае идеального фильтра, определяется по формуле:
где U1 – действующее значение входного напряжения;
R – сопротивление нагрузки.
Фактическая мощность, выделяемая в нагрузке реального фильтра, определяется действующим значением выходного напряжения, которое зависит от частоты входного напряжения:
Передаточной функцией по мощности будем называть отношение мощности, выделяемой в нагрузке реального фильтра (2.2) к мощности, выделяемой в нагрузке, идеального фильтра:
Таким образом, передаточная функция по мощности есть квадрат передаточной функции по напряжению (2.3).
Отметим, что в известных учебниках по ОТЦ частотные характеристики фильтров оцениваются затуханием, которое выражается в децибелах (дБ):
Из этой формулы следует, что фактически производится оценка затухания (ослабления) сигнала по мощности.
Поскольку физический смысл формулы (2.4) спрятан под знаком логарифма, постольку в дальнейшем будем пользоваться более простой формулой (2.3), физический смысл которой более прост и понятен.
Расчет коэффициента прямоугольности передаточной функции по мощности ФНЧ будем производить следующим образом.
Определим частоту, на которой передаточная функция по мощности составляет 5% от максимума:
За пределами этой частоты будем считать, что передаточная функция равна нулю
Определим полную площадь под кривой передаточной функции (Рис.2.1):
Определим также площадь под кривой передаточной функции в пределах полосы пропускания (0…f2), где передаточная функция по напряжению
а передаточная функция по мощности (Рис.2.1):
Коэффициентом прямоугольности передаточной функции по мощности будем называть отношение найденных площадей:
По физической сущности коэффициент прямоугольности представляет собой коэффициент полезного использования площади под кривой передаточной функции по мощности и дает представление о степени соответствия реального фильтра идеальному с той же полосой пропускания.
2.4 Емкостной фильтр нижних частот
2.4.1 Частотные характеристики емкостного фильтра нижних частот первого порядка (ФНЧ-1)
Рассмотрим электрическую схему, изображенную на Рис.2.3, которая представляет собой простейший фильтр нижних частот первого порядка (ФНЧ-1).
.
1 2С R
1’ 2’
Рис.2.3. Емкостной фильтр нижних частот (ФНЧ-1)
Работа ФНЧ-1:При
При
На малых частотах емкость обладает большим сопротивлением и поэтому весь
проходит только через резисторы r, R, не ответвляясь в емкость.На больших частотах емкость обладает малым сопротивлением. Она закорачивает нагрузку и поэтому выходное напряжение мало.
Определим для этого фильтра АЧХ и ФЧХ, рассматривая его как Г-образный 4х-П, нагруженный активным сопротивлением R.
Сопротивления плеч фильтра:
Коэффициенты формы А:
Уравнение связи входного и выходного напряжений (1.6):
где
- эквивалентное сопротивление при параллельном соединении R и r. Из (2.8) получаем фазо-частотную характеристику ФНЧ-1: Передаточные функции ФНЧ-1 принимают вид:
где
- значение передаточной функции на частоте ω=0.Теперь, по формулам (2.9) и (2.10) можно, при известных значениях R, r, C-элементов, рассчитать и построить графики АЧХ и ФЧХ простейшего фильтра нижних частот (ФНЧ-1).
При изучении частотных характеристик фильтров удобно пользоваться АЧХ ФЧХ в параметрической форме. Для этого необходимо ввести в рассмотрение приведенную, или так называемую нормированную частоту, которая, в данном случае, определяется по формуле
где
- граничная частота, на которой реактивное сопротивление емкости равно активному сопротивлению Запишем (2.9) и (2.10) в параметрической форме:
Параметрические функции (2.11) и (2.12) позволяют проводить общий анализ АЧХ и ФЧХ фильтра при заданных значениях R, r-элементах и произвольном значении емкости С.