Совместное решение (2.23) и (2.24) дает формулы для определения неизвестных LC-элементов:
Теперь по формулам (2.18), (2.20), и (2.25) можно рассчитать потребные значения LC-элементов для построения Г-образного ФНЧ, а также рассчитать и построить графики АЧХ и ФЧХ этого спроектированного фильтра.
Пример 2.4. Спроектировать Г-образный ФНЧ, схема которого представлена на Рис.2.8:
Исходные данные:
R=100 Ом – сопротивление нагрузки;
f2=1000 Гц – верхняя граница полосы пропускания;
H(f2)=0,707 – значение передаточной функции по напряжению на верхней границе полосы пропускания.
Требование к фильтру: передаточные функции по напряжению и мощности в полосе пропускания должны быть максимально плоскими, т.е. не иметь всплесков и провалов.
Решение. Из Рис.2.9. выбираем кривую
, которая удовлетворяет требованиям технического задания.Из таблицы 2.1 по заданному значению Н1=Н(f2)=0,707 выбираем соответствующее значение приведенной частоты n2=1.
По формулам (2.25) определяем потребные значения LC-элементов для построения Г-образного ФНЧ.
По формулам (2.18) и (2.20) рассчитываем АЧХ и ФЧХ спроектированного фильтра и оцениваем коэффициент прямоугольности передаточной функции по мощности этого фильтра.
Результаты расчетов приведены на Рис.2.10 и Рис.2.10а.
Из этих результатов главными являются найденные значения индуктивности и емкости: L=23 мГн и С=1,125 мкФ, при которых передаточные функции на верхней границе полосы пропускания принимают заданные значения:
Следовательно, спроектированный Г-образный ФНЧ удовлетворяет требованиям технического задания.
Коэффициент прямоугольности передаточной функции по мощности Г-образного ФНЧ составляет П=0,807.
Отметим, что изложенный порядок проектирования носит общий характер и может применяться в среде Mathcad при любой комбинации исходных данных: H1, f2, R, Q.
2.6 Т-образный фильтр нижних частот
2.6.1 Частотные характеристики Т-образного фильтра нижних частот
В целях дальнейшего повышения коэффициента прямоугольности применяют фильтры третьего порядка, к числу которых относится Т-образный ФНЧ, изображенный на Рис.2.11.
L1L2Z1Z3
Z2 CR
Рис.2.11. Электрическая схема Т-образного ФНЧ
Работа Т-образного ФНЧ
На малых частотах индуктивные сопротивления Z1, Z3 малы, а емкостное сопротивление Z2 велико, поэтому ток проходит в нагрузку с малым ослаблением.
На больших частотах на пути тока в нагрузку стоят два больших сопротивления индуктивностей L1 и L2, а ток, прошедший через L1 закорачивается малым емкостным сопротивлением.
Определим АЧХ и ФЧХ Т-образного ФНЧ, рассматривая его как Т-образный 4х-П, нагруженный активным сопротивлением R.
Комплексные сопротивления плеч фильтра:
Коэффициенты формы А:
где - коэффициент асимметрии фильтра, который может быть выбран в пределах
Уравнение связи входного и выходного напряжений:
Фазо-частотная характеристика фильтра определяется по формулам (1.8), а передаточная функция по напряжению рассчитывается по формуле (1.10).
Таким образом, при известных значениях RLC - элементов можно рассчитать и построить графики АЧХ и ФЧХ Т-образного ФНЧ, используя формулы (1.8), (1.10) и (2.26).
Представим, как и ранее для Г-образного ФНЧ, передаточные функции по напряжению и мощности в параметрической форме:
Пример 2.5. Рассчитать и построить семейство кривых передаточной функции по мощности в параметрической форме (2.27) для трех значений коэффициента нагрузки:Результаты расчетов представлены на Рис.2.12.
Из Рис.2.12 следует, что для Т-образного несимметричного ФНЧ оптимальным значением коэффициента нагрузки следует считать Q2=1,0 при коэффициенте асимметрии
, который был определен в результате предварительных исследований.Коэффициент прямоугольности передаточной функции по мощности Т-образного несимметричного ФНЧ при Q=1 и
равен П=0,905. 2.6.2. Синтез Т-образного фильтра нижних частот
Поставим задачу спроектировать Т-образный несимметричный ФНЧ по ТЗ на проектирование Г-образного ФНЧ.
Из Рис.2.11 видно, что в состав Т-образного фильтра входят три неизвестных реактивных элемента: L1, L2 и С, которые необходимо определить.
Следовательно, для определения трех неизвестных необходимо составить три независимых уравнения.