Смекни!
smekni.com

Электронные компоненты (стр. 4 из 4)

Интенсивность отказов ИМС лежит в пределах 10-6-10-9 ч-1, приближаясь к уровню высоконадежных элементов.

Сравнение интенсивности отказов отдельных элементов ИМС и ИМС в целом показывает, что они практически равнозначны. Преимуществом является то, что степень функциональной сложности ИМС с малым и средним уровнем интеграции слабо отражается на их надежности.

Для ИМС прежде всего характерны внезапные отказы, обусловленные качеством изготовления (технологическими дефектами): разрывы соединений между контактной зоной на поверхности подложки (кристалла) и выводами корпуса, обрывы и короткие замыкания внутренних соединений. Внезапные отказы полупроводниковых ИМС составляют 80% от общего числа отказов. Свыше 50% отказов гибридных линейных ИМС связано с дефектами встроенных транзисторов и паяных соединений. Отказы контактов золотых проволочных выводов чаще всего происходят из-за обрыва проволочки около шарика ковары.

Наиболее слабым звеном полупроводниковых ИМС в пластмассовых корпусах являются внутренние проволочные соединения, дающие обрывы и короткие замыкания (более 90% отказов вызвано обрывами соединительных проводов).

Основная причина таких отказов определяется различием температурных коэффициентов линейного расширения металла и обволакивающего материала, что приводит к возникновению термомеханических напряжений. Около 10% отказов полупроводниковых ИМС в пластмассовых корпусах происходит по причине электрической коррозии алюминиевой металлизации из-за недостаточной влагостойкости пластмасс и загрязнения поверхности окисла при герметизации. Типичны для таких ИМС и отказы из-за образования шунтирующих утечек и коротких замыканий, так как влага вызывает перенос ионов металла и загрязнений, а также образование проводящих мостиков между разнопотенциальными точками схемы.

Более надежными являются ИМС с керамическими корпусами.

У полупроводниковых приборов - диодов, транзисторов, тиристоров, микросхем постепенные и внезапные отказы возникают чаще, чем другие виды отказов. Наиболее характерным изменением параметров полупроводниковых приборов, приводящим к постепенным отказам, является увеличение обратного тока диодов и неуправляемых обратных токов коллекторных переходов транзисторов и тиристоров. Внезапные отказы являются следствием ошибок в конструкции полупроводниковых приборов и нарушения технологии их изготовления. На основе данных о работе полупроводниковых приборов в различных схемах можно считать, что около 80% их отказов являются постепенными. В справочной литературе, достаточно широко учтены влияющие факторы на работоспособность полупроводниковых приборов в виде поправочных коэффициентов, определяемых по таблицам или номограммам.

Вывод

Проблема обеспечения надежности электронных компонентов включает в себя множество этапов: от создания элементов и аппаратуры, до ее практического использования. Поэтому все факторы, влияющие на надежность РЭА, условно принято рассматривать применительно к трем этапам.

При проектировании учитывают следующие факторы:

качество и количество применяемых элементов и деталей;

режимы работы элементов и деталей;

стандартизация и унификация;

доступность деталей узлов и блоков для осмотра и ремонта.

К производственные факторы, отрицательно влияющие на надежность:

отсутствие качественного контроля материалов и комплектующих изделий, поступающих от смежных предприятий;

нарушение сортности и недоброкачественная замена материала при изготовлении деталей;

установка в приборах элементов, подвергающихся длительному хранению в неблагоприятных условиях, без предварительной проверки;

недостаточное внимание к чистоте оборудования, рабочего места, воздуха и т.д. (что особенно важно в производстве микросхем и сборке точных элементов и устройств);

неполный контроль за ходом операций и при выпуске готовой продукции;

нарушение режима сложных технических процессов.

К эксплуатационные факторы, влияющие на надежность, следующие:

квалификация обслуживающего и ремонтного персонала;

воздействие на приборы и механизмы внешних условий (климатических; механических и т.п.) и факторы времени.

Перечень литературы

1. Горлов М.И., Королев С.Ю. Физические основы надежности интегральных микросхем. - Воронеж: ВГУ, 1995. - 200с.

2. Ефимов И.Е., Козырь И.Я., Горбунов Ю.И. Микроэлектроника. Физические и технологические основы, надежность. - М.: Высшая школа, 1986.

3. Фомин А.В., Боченков Ю.И., Сорокопуд В.А. Технология, надежность и автоматизация производства БГИС и микросборок / Под ред. А.В. Фомина. - М.: Радио и связь, 1981.

4. Чернышев А.А. Основы надежности полупроводниковых приборов и интегральных микросхем. - М.: Радио и связь, 1988. - 256с.

5. Докучаев И.И., Козырь И.Я., Онопко Д.И. Испытания и измерения интегральных микросхем. - М.: Изд. МИЭТ, 1978.