Смекни!
smekni.com

Электрополитография. Рентгенолитография (стр. 2 из 2)

во-первых, имеет принципиально большую разрешающую способность, обусловленную малым влиянием дифракционных явлений;

во-вторых, пучок электронов можно отклонять и запирать с большими скоростями с помощью электрических или магнитных полей и управлять им по программе, заложенной в ЭВМ;

в-третьих, электронный пучок можно фокусировать с помощью магнитных линз в тонкий луч однородной плотности или формировать с помощью диафрагм в прямоугольный пучок переменного сечения;

в -четвертых, глубина резкости электронно-оптических систем значительно больше, чем оптических проекционных, что существенно снижает требования к геометрии полупроводниковых подложек;

в-пятых, так как электронно-лучевые системы размещаются в вакуумной рабочей камере, подложки в процессе экспонирования не загрязняются.

Рентгенолитиграфия

При рентгенолитографии изображение на полупроводниковую подложку "переносится с шаблона, называемого рентгеношаблоном, с помощью мягкого рентгеновского излучения, длина волны которого λ = 0,5…2 нм. Разрешающая способность рентгенолитографии 0,2 - 0,3 мкм.

В настоящее время рентгенолитография не нашла широкого применения в серийном производстве полупроводниковых приборов и ИМС из-за сложности технологии и используемого оборудования. Для реализации рентгенолитографии необходимы:

мощный источник рентгеновского излучения с малой расходимостью пучка;

рентгеношаблоны, обладающие высокой прочностью, контрастностью и малым температурным коэффициентом линейного расширения;

рентгенорезисты высокой разрешающей способности и чувствительности;

системы мультипликации изображения, погрешность совмещения которых не превышает 0,03 - 0,05 мкм.

Упрощенная схема экспонирования при рентгенолитографии показана на рисунке 6.

При рентгенолитографии используют два способа переноса изображения с рентгеношаблона на рабочую площадь подложек: полностью и мультипликацией.

В обоих случаях совмещение выполняют по специальным меткам на рентгеношаблоне и подложках при освещении монохроматическим излучением видимого диапазона, а экспонирование — рентгеновским.

Рисунок 6. Схема экспонирова­ния рентгенолитографии:

1 — поток рентгеновских лучей, 2 - канал совмещения, 3 — опорная рамка рентгеношаблона, 4 — об­ласть экспонирования (окно в опорной рамке), 5 -рисунок на слое, непрозрачном для рентгеновских лучей, б — окно для совмещения рентгеношаблона и подложки, 7 - пленка, несущая рисунок и прозрачная для рентгеновских лучей, 8 — метка совмещения на подложке, 9 — слой рентгенорезиста, 10 — подложка

Плотность потока рентгеновский лучей, падающих на подложку, обратно пропорциональна расстоянию от их источника. Поэтому это расстояние, чтобы уменьшить время экспонирования, с одной стороны, должно быть небольшим, а с другой, для уменьшения размытости изображения из-за расходимости рентгеновского луча — большим. Кроме того, необходимо устанавливать с высокой точностью (не хуже 0,5 мкм) зазор между поверхностями рентгеношаблона и подложки, для чего их закрепляют в специальном устройстве.

Как известно, при облучении поверхности потоком ускоренных электронов она излучает рентгеновские лучи. Для создания высокоинтенсивного потока рентгеновского излучения необходимо использовать электронные пучки высокой плотности тока. В качестве материалов, используемых для изготовления мишеней, способных излучать рентгеновские лучи требуемых длин волн, обычно служат Сu, Al, Mo, Pd.

Основной характеристикой источника рентгеновского излучения является длина волны и способность материала мишени выдерживать электронный поток высокой интенсивности. Мишень при облучении мощными потока электронов сильно нагревается, плавится и испаряется, поэтому отвод теплоты является основной задачей при создании высокоинтенсивных источников излучения. Так как электроны и рентгеновские лучи достаточно легко рассеиваются в воздухе, необходимо рентгеновский источник помещать в высокий вакуум. По этой же причине систему совмещения и экспонирования также располагают в низковакуумной рабочей камере или заполняют камеру гелием.

Высоковакуумная часть установки рентгенолитографии отделяется от низковакуумной вакуумно-плотным окном, прозрачным для мягкого рентгеновского излучения. Этим требованиям отвечают окна из бериллия или прочных органических пленок толщиной до 7 — 8 мкм, которые, кроме того, обладают незначительным поглощением рентгеновского излучения и обеспечивают надежную изоляцию объемов источника и рабочей камеры.

В настоящее время в рентгенолитографии используют точечные источники мягкого рентгеновского излучения, в которых электронный пучок фокусируется на вращающейся с большой частотой (10 000 об/мин и более) мишени, охлаждаемой проточной водой.

Наиболее перспективным источником рентгеновского излучения является синхротронное излучение, создаваемое ускорителем электронов в магнитном поле при движении их по криволинейным траекториям. Синхротронное излучение имеет непрерывный спектр, максимум которого при достаточно большой энергии (до 1 ГэВ) приходится на область мягкого рентгеновского излучения.

Использование синхротронного излучения в рентгенолитографии обусловлено его сильной природной коллимацией, т.е. малой расходимостью потока. В каждой точке криволинейного участка орбиты поток синхротронного излучения сосредоточен в пределах очень узкого конуса с углом вертикальной расходимости порядка нескольких угловых секунд. В результате этого при экспонировании геометрические искажения переносимого изображения оказываются незначительными.

Синхротронное излучение обладает высокой интенсивностью и превосходит в тысячи раз рентгеновское излучение, создаваемое мишенями. Благодаря этому экспонирование синхротронным излучением составляет единицы секунд, что обеспечивает высокую производительность рентгенолитографии.

Стоимость синхротронов очень велика, поэтому необходимо использовать их на множество каналов экспонирования.

Следует отметить, что при использовании синхротронного излучения плоскости рентгеношаблона и подложки должны располагаться по вертикали. Это надо учитывать при проектиро­вании установок совмещения и мультипликации, так как подложки должны точно перемещаться в вертикальной плоскости.

Рентгенорезисты не являются особым классом органических соединений и не отличаются по механизму работы от электронорезистов. Особенность состоит лишь в том, что поглощение слоем резиста рентгеновского излучения меньше, чем электронного, поэтому и эффективность экспонирования рентгеновскими лучами ниже. В результате поглощения кванта энергии рентгеновского излучения в резисте возникают фотоэлектроны которые, взаимодействуя с полимерной основой позитивны: или негативных резйстов, приводят к ее деструкции или объем ной полимеризации.

Кроме того, следует учитывать, что в результате поглощения рентгеновского излучения подложка также излучает электроны, которые производят дополнительное экспонирование. Именно вторичное электронное излучение ограничивает разрушающую способность рентгенолитографии.

Важной проблемой рентгенолитографии является разработка технологии изготовления рентгеношаблонов, которые должны отвечал определенным требованиям. Маска рентгеношаблона, нанесенная на тон кую мембрану, должна хорошо поглощать рентгеновское излучение а мембрана должна обладать малым коэффициентом поглощения, достаточной механической прочностью и не давать усадок и искажение при изменении внешних условий.

Исходя из этих требований, маски формируют в виде тонких пленок Аu, Pt, W, Mo, а мембраны изготовляют в виде тонких слоев Be, Si, SiO2, Si3N4, A12O3, их сочетаний или специальных безусадочных полимерных пленок.

Как правило, рентгеношаблоны выполняют на жестком каркасе (обычно — это селективно вытравленные кремниевые подложки), на который наносят мембрану. Изображения элементов на рентгеношаблоне создают электронолитографией.

При рентгенолитографии следует учитывать также радиационные дефекты, которые возникают как в экспонируемых Полупроводниковых подложках, так и в рентгеношаблонах. Дефекты, возникающие в формируемых в подложках транзисторных структурах, устраняют термическим отжигом. Высокие дозы рентгеновского излучения приводят к тому, что сроки использования рентгеношаблонов невелики.

Одним из достоинств рентгенолитографии является возможность получения структур субмикронных размеров с низким уровнем дефектности. Это объясняется тем, что загрязняющие частицы, как правило, органические, существенно не ослабляют рентгеновское излучение при экспонировании, вследствие чего дефекты рентгеношаблона не переносятся на слой рентгенорезиста на подложке.

Рентгенолитографию следует рассматривать как один из наиболее перспективных методов литографии при изготовлении сверхбыстродействующих полупроводниковых приборов и ИМС.


ЛИТЕРАТУРА

1. Черняев В.Н. Технология производства интегральных микросхем и микропроцессоров. Учебник для ВУЗов - М; Радио и связь, 2007 - 464 с: ил.

2. Технология СБИС. В 2 кн. Пер. с англ./Под ред. С.Зи,- М.: Мир, 2006.-786 с.

3. Готра З.Ю. Технология микроэлектронных устройств. Справочник. - М.: Радио и связь, 2001.-528 с.

4. Достанко А.П., Баранов В.В., Шаталов В.В. Пленочные токопроводящие системы СБИС.-Мн.: Выш.шк., 2000.-238 с.