Для сжатия данных возьмем кодер, использующий следующую таблицу перекодирования данных источника в кодовые слова (вопрос о выборе таблицы оставим на будущее):
Кодер | |
Отсчет | Кодовое слово |
3 | 001 |
2 | 01 |
1 | 1 |
0 | 000 |
Используя таблицу кодирования, заменим каждый элемент вектора X соответствующей кодовой последовательностью из таблицы (так называемое кодирование без памяти). Сжатые данные (кодовое слово B(X))будут выглядеть следующим образом:
B(X) = ( 0,0,1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,1,0,1,1,0,0,0,1,1,1,0,0,0).
Коэффициент сжатия при этом составит r = 32/31, или 1,03. Соответственно скорость сжатия R = 31/16 бит на отсчет.
Пример 3. Сравним два различных кодера, осуществляющих сжатие одного и того же вектора данных
X = ABRACADABRA .
Первый кодер - кодер без памяти, аналогичный рассмотренному в предыдущем примере (каждый элемент вектора Xкодируется независимо от значений других элементов - кодер без памяти). Таблица кодирования для него выглядит следующим образом:
Кодер 1 | |
Символ | Кодовое слово |
A | 0 |
B | 10 |
R | 110 |
C | 1110 |
D | 1111 |
Второй кодер при кодировании текущего символа учитывает значение предшествующего ему символа, таким образом, кодовое слово для текущего символа Aбудетразличным в сочетаниях RA, DAи CA( иными словами, код обладает памятью в один символ источника):
Кодер 2 | |
Символ, предыдущий символ | Кодовое слово |
(A,-) | 1 |
(B,A) | 0 |
(C,A) | 10 |
(D,A) | 11 |
(A,R) | 1 |
(R,B) | 1 |
(A,C) | 1 |
(A,B) | 1 |
Кодовые слова, соответствующие вектору данных X = ABRACADABRA, при кодировании с использованием этих двух таблиц будут иметь вид:
B1(X) = 01011001110011110101100,
B2(X) = 10111011111011.
Таким образом, скорость сжатия при использовании кодера 1 (без памяти) составит 23/11 = 2,09 бита на символ данных, тогда как для кодера 2 - 13/11 = =1,18 бита на символ. Использование второго кодера, следовательно, является более предпочтительным, хотя он и более сложен.
ЛИТЕРАТУРА
1. Лидовский В.И. Теория информации. - М., «Высшая школа», 2002г. – 120с.
2. Метрология и радиоизмерения в телекоммуникационных системах. Учебник для вузов. / В.И. Нефедов, В.И. Халкин, Е.В. Федоров и др. – М.: Высшая Школа, 2001 г. – 383с.
3. Цапенко М.П. Измерительные информационные системы. – М.: Энергоатом издат, 2005. - 440с.
4. Зюко А.Г. , Кловский Д.Д., Назаров М.В., Финк Л.М. Теория передачи сигналов. М: Радио и связь, 2001 г. –368 с.
5. Б. Скляр. Цифровая связь. Теоретические основы и практическое применение. Изд. 2-е, испр.: Пер. с англ. – М.: Издательский дом «Вильямс», 2003 г. – 1104 с.