Смекни!
smekni.com

Эффективность корреляционной обработки одиночных сигналов (стр. 2 из 2)

При этом решение о наличии или отсутствии сигнала принимается путем сравнения с порогом Z* модуля (или квадрата модуля) корреляционного интеграла

формируемого на выходе одноканальной схемы корреляционной обработки на промежуточной частоте или на выходе двухканальной схемы корреляционной обработки на видеочастоте (с двумя квадратурными каналами), когда произвольная начальная фаза опорного сигнала не зависит от начальной фазы принятого сигнала, поскольку последняя не известна:

В отсутствие полезного сигнала случайная величина Z, как модуль нормального распределенного корреляционного интеграла, распределена по релеевскому закону

причем ее второй начальный момент (или дисперсия корреляционного интеграла) равен:

Вероятность ложной тревоги, как площадь под кривой P0 (z) правее порога Z*, определяется следующим образом:

где V = Z/σw – новая переменная интегрирования,

λ* = Z*/σw – относительный порог.

При наличии полезного сигнала случайная величина Z, как модуль нормального распределенного корреляционного интеграла с выраженным средним значением сигнальной составляющей

распределена по, так называемому, закону Райса (обобщенному релеевскому закону)

среднее значение и дисперсия которого равны

При α >> σw обобщённый релеевский закон можно аппроксимировать нормальным законом

полагая

При этом вероятность правильного обнаружения, как площадь под кривой р1(z) правее порога Z*, определяется выражением:

где

- отношение сигнал/шум по напряжению на выходе коррелятора.

На рис.4 показаны возможные реализации напряжения на выходе "линейного" детектора после коррелятора в отсутствие и при наличии полезного сигнала на интервале времени от tr до tr + T0, равном длительности сигнала. На рис.3 показаны распределения случайной величины Z, формируемой в момент времени t = tr + T0, как в отсутствие сигнала p0(z), так и при его наличии p1(z) а также дана геометрическая интерпретация вероятностей F и D.

в) Сигнал с неизвестной начальной фазой и случайной амплитудой

При этом, как и в предыдущем случае, решение о наличии или отсутствии сигнала принимается путем сравнения с порогом Z* квадрата модуля (или модуля) корреляционного интеграла

где

- опорный сигнал с произвольной начальной фазой.

В отсутствие полезного сигнала случайная величина Z, как квадрат модуля нормально распределенного корреляционного интеграла, распределена по экспоненциальному закону:

,
.

Рис.4. Возможные реализации напряжения.

Рис.5. Законы распределения случайной величины Z для сигнала с неизвестной начальной фазой и неслучайной амплитудой.

причем ее среднее (или дисперсия корреляционного интеграла) равно:

.

При наличии полезного сигнала выходная случайная величина Z, как квадрат модуля нормально распределенного корреляционного интеграла с нулевыми средними значениями квадратурных составляющих (благодаря принятой модели сигнала)

сохраняет экспоненциальное распределение

причем ее среднее значение равно:

На Рис.6 показаны возможные реализации напряжения на выходе детектора (после коррелятора) в отсутствие и при наличии полезного сигнала на интервале времени от trдо tr +T0, равном длительности сигнала. На рис.7 показаны распределения случайной величины Z, формируемой в момент времени t= tr + T0, как в отсутствии сигнала p0(z), так и при его наличии p1(z), а также дана геометрическая интерпретация вероятностей Fи D.

Вероятности ложной тревоги и правильного обнаружения, как площади под кривыми р0(z) и p1(z) правее порога Z* определяются следующим образом:

где λ* = Z*/Zш - относительный порог,

- отношение сигнал/шум по мощности.

Характеристики обнаружения, т.е. зависимости вероятностей правильного обнаружения Dот отношения сигнал/шум qпри фиксированной вероятности ложной тревоги F, для трех рассмотренных случаев приведены на рис.8. По этим кривым можно определить пороговые сигналы - отношения сигнал/шум qпср, соответствующие заданным фиксированным вероятностям ложной тревоги и требуемым вероятностям правильного обнаружения:

qпор = q(F, D).

При фиксированной вероятности ложной тревоги F = 10-3 и требуемой вероятности правильного обнаружения D = 0,9 пороговые сигналы, соответствующие рассмотренным трем случаям равны:

qa = 4.4,

qб = 5.0,

qв = 11.7.

Таким образом, пороговый сигнал растет по мере увеличения априорной неопределенности относительно параметров принимаемого сигнала.

Рис.6. Возможные реализации напряжения на выходе детектора после коррелятора для сигнала с неизвестной начальной фазой и случайной амплитудой.

Рис.7. Законы распределения случайной величины Z для сигнала с неизвестной начальной фазой и случайной амплитудой.

Рис.8. Характеристики обнаружения сигналов с различной степенью известности их параметров.

ЛИТЕРАТУРА

1. Охрименко А.Е. Основы извлечения, обработки и передачи информации. (В 6 частях). Минск, МРТИ, 2004.

2. Медицинская техника, М., Медицина 1996-2000 г.

3. Сиверс А.П. Проектирование радиоприемных устройств, М., Радио и связь, 2006.

4. Чердынцев В.В. Радиотехнические системы. – Мн.: Высшая школа, 2005.

5. Радиотехника и электроника. Межведомств. темат. научн. сборник. Вып. 22, Минск, БГУИР, 2004.