Міністерство освіти і науки України
Національний технічний університет України
«Київський політехнічний інститут»
Кафедра КЕОА
Розрахунково-графічна контрольна робота
з курсу:
«Моделювання станів транзистора 2Т909Б»
Об’єкт дослідження
Кремнієвий епітаксіально-планарний транзистор n-p-n типу 2Т909Б. Залежність струму колектора (Iк, А) від напруги колектор-емітер (Uке, В) і струму бази (Iб, А).
Структура | n-p-n |
Макс. напр. к-е при заданному тоці и заданному сопр. в цепи б-э.(Uкэr макс),В | 60 |
Максимально допустимий ток к (Iк макс,А) | 4 |
Гранична частота коефіціента передачі тока fгр,МГц | 500.00 |
Максимальна розсіювальна потужність (Рк,Вт) | 54 |
Корпус | KT-15 |
Мета дослідження
Дослідити характер залежності струму колектора Iк від напруги на колекторно-емітерному переході Uке і струму бази Іб для вихідних ВАХ транзистора.
Актуальність дослідження
Транзистори широко використовуються в електронних приладах в якості підсилювачів. Вони виготовляються з метою застосування в якійсь конкретній області. Досліджуваний транзистор 2Т909Б (потужний, високочастотний, кремніевий, епитаксиально-планарний, структура n-p-n, використовуеться у широкополосних підсилювачів потужності)
Метод дослідження
Дослідження двофакторного виробничого процесу проводиться за допомогою метода регресійного аналізу. Його особливістю є те, що стан технічної системи описують функцією багатьох аргументів. Числове значення функції – параметр оптимізації Y, що залежить від факторів xi, i = 1, 2 …. m, де m – номер фактора. Множина можливих сполучень факторів і їхніх значень визначає множину станів технічної системи.
Факторами можуть бути як незалежні змінні так і функції одного або декількох факторів (повнофакторний регресійний аналіз).
Функціональний зв’язок параметру Y з факторами xi моделюють поліномом (рівнянням регресії):
Y = b0 + b1x1 + b2x2 +...+ bnxn + b12x1x2 + b13 x1x3 +…bn-1,n xn-1xn+ …+ bn+kx12 + bn+k+1x22 + … + bmxn2 + … = b0 + b1x1 + b2x2 +... + bnxn +... + bmxm +… (1),
де x1, x2, x3,..., xn – фактори,
b0, b1, b2,…, bn – коефіцієнти.
Коефіцієнти регресії bi визначають, виходячи з критерію мінімізації суми квадратів різниці між експериментально встановленими значеннями параметра yj і модельним значенням параметра yjmod у всіх експериментальних точках j = 1, 2, 3... N, де N – кількість дослідів. Необхідною умовою існування мінімуму є рівність
. Вона визначає наявність екстремуму функції похибки апроксимації . Оскільки верхньої межі функція не має (похибка може бути як завгодно великою), умова є достатньою умовою існування мінімуму. Рівність нулю частинних похідних визначає систему n рівнянь з n невідомими, якими є коефіцієнти bi рівняння регресії. Після розкриття дужок, зведення подібних членів і перегрупування одночленів система рівнянь набуває вигляду:Ліву частину системи рівнянь можна представити добутком трьох матриць (XTX)B, а праву добутком двох матриць XTY,
де Х – матриця умов,
XT – транспонована матриця Х,
В – матриця коефіцієнтів,
Y – матриця результатів (матриця станів),
xkl – значення k-го фактора в l-му досліді.
X =
, B = , Y = .У матричному вигляді систему записують рівнянням (XTX)B = XTY. З останнього рівняння очевидно, що коефіцієнти bi визначаються як
, де (XTX)-1 – обернена матриця (XTX). Дисперсію моделювання оцінюють за формулою:δмод2 =
,де N - кількість дослідів,
d – кількість значущих коефіцієнтів моделі
k – кратність дублювання дослідів
Експериментальні дані та їх обробка
Математичну модель процесу представимо у вигляді полінома, а саме:
Y’ = b0 + b1 Uке + b2 Iб + b3 Uке Iб + b4 Uке2 + b5 Iб2+ b6 Uке2 Iб + b7 Iб2 Uке +
+ b8 Uке2 Iб2,
де Y’ – розрахункове значення струму колектора Ік (мА),
b0, b1 … – коефіцієнти поліному,
Uке – напруга на колекторно-емітерному переході (В),
Iб – струм бази Іб (мА).
Сімейство ВАХ транзистора 2Т909Б має наступний вигляд (рис.1)
Рис. 1. Вольт-амперні характеристики транзистора 2Т909Б.
Отримані експериментальні данні наведено в табл. 1.
Таблиця 1. Експериментальна залежність ІК (мА) від ІБ та UКЕ для транзистора 2Т909Б
x0 | x1(Iб) | x2(Uк-э) | x1*x2 | X1^2 | x2^2 | x1*x2^2 | x1^2*x2 | (x1*x2)^2 | Y |
1 | 0,05 | 0,2 | 0,01 | 0,0025 | 0,04 | 0,002 | 0,0005 | 0,0001 | 0,5 |
1 | 0,05 | 0,4 | 0,02 | 0,0025 | 0,16 | 0,008 | 0,001 | 0,0004 | 0,7 |
1 | 0,05 | 0,6 | 0,03 | 0,0025 | 0,36 | 0,018 | 0,0015 | 0,0009 | 0,8 |
1 | 0,05 | 0,8 | 0,04 | 0,0025 | 0,64 | 0,032 | 0,002 | 0,0016 | 0,8 |
1 | 0,05 | 1 | 0,05 | 0,0025 | 1 | 0,05 | 0,0025 | 0,0025 | 0,8 |
1 | 0,05 | 1,2 | 0,06 | 0,0025 | 1,44 | 0,072 | 0,003 | 0,0036 | 0,8 |
1 | 0,05 | 1,4 | 0,07 | 0,0025 | 1,96 | 0,098 | 0,0035 | 0,0049 | 0,8 |
1 | 0,05 | 1,6 | 0,08 | 0,0025 | 2,56 | 0,128 | 0,004 | 0,0064 | 0,8 |
1 | 0,05 | 1,8 | 0,09 | 0,0025 | 3,24 | 0,162 | 0,0045 | 0,0081 | 0,8 |
1 | 0,05 | 2 | 0,1 | 0,0025 | 4 | 0,2 | 0,005 | 0,01 | 0,8 |
1 | 0,1 | 0,2 | 0,02 | 0,01 | 0,04 | 0,004 | 0,002 | 0,0004 | 1 |
1 | 0,1 | 0,4 | 0,04 | 0,01 | 0,16 | 0,016 | 0,004 | 0,0016 | 1,5 |
1 | 0,1 | 0,6 | 0,06 | 0,01 | 0,36 | 0,036 | 0,006 | 0,0036 | 1,8 |
1 | 0,1 | 0,8 | 0,08 | 0,01 | 0,64 | 0,064 | 0,008 | 0,0064 | 2,1 |
1 | 0,1 | 1 | 0,1 | 0,01 | 1 | 0,1 | 0,01 | 0,01 | 2,3 |
1 | 0,1 | 1,2 | 0,12 | 0,01 | 1,44 | 0,144 | 0,012 | 0,0144 | 2,5 |
1 | 0,1 | 1,4 | 0,14 | 0,01 | 1,96 | 0,196 | 0,014 | 0,0196 | 2,6 |
1 | 0,1 | 1,6 | 0,16 | 0,01 | 2,56 | 0,256 | 0,016 | 0,0256 | 2,7 |
1 | 0,1 | 1,8 | 0,18 | 0,01 | 3,24 | 0,324 | 0,018 | 0,0324 | 2,7 |
1 | 0,1 | 2 | 0,2 | 0,01 | 4 | 0,4 | 0,02 | 0,04 | 2,7 |
1 | 0,15 | 0,2 | 0,03 | 0,0225 | 0,04 | 0,006 | 0,0045 | 0,0009 | 1,2 |
1 | 0,15 | 0,4 | 0,06 | 0,0225 | 0,16 | 0,024 | 0,009 | 0,0036 | 2 |
1 | 0,15 | 0,6 | 0,09 | 0,0225 | 0,36 | 0,054 | 0,0135 | 0,0081 | 2,5 |
1 | 0,15 | 0,8 | 0,12 | 0,0225 | 0,64 | 0,096 | 0,018 | 0,0144 | 2,9 |
1 | 0,15 | 1 | 0,15 | 0,0225 | 1 | 0,15 | 0,0225 | 0,0225 | 3,1 |
1 | 0,15 | 1,2 | 0,18 | 0,0225 | 1,44 | 0,216 | 0,027 | 0,0324 | 3,3 |
1 | 0,15 | 1,4 | 0,21 | 0,0225 | 1,96 | 0,294 | 0,0315 | 0,0441 | 3,5 |
1 | 0,15 | 1,6 | 0,24 | 0,0225 | 2,56 | 0,384 | 0,036 | 0,0576 | 3,7 |
1 | 0,15 | 1,8 | 0,27 | 0,0225 | 3,24 | 0,486 | 0,0405 | 0,0729 | 3,9 |
1 | 0,15 | 2 | 0,3 | 0,0225 | 4 | 0,6 | 0,045 | 0,09 | 4 |
1 | 0,2 | 0,2 | 0,04 | 0,04 | 0,04 | 0,008 | 0,008 | 0,0016 | 1,2 |
1 | 0,2 | 0,4 | 0,08 | 0,04 | 0,16 | 0,032 | 0,016 | 0,0064 | 2,6 |
1 | 0,2 | 0,6 | 0,12 | 0,04 | 0,36 | 0,072 | 0,024 | 0,0144 | 3 |
1 | 0,2 | 0,8 | 0,16 | 0,04 | 0,64 | 0,128 | 0,032 | 0,0256 | 3,4 |
1 | 0,2 | 1 | 0,2 | 0,04 | 1 | 0,2 | 0,04 | 0,04 | 3,8 |
1 | 0,2 | 1,2 | 0,24 | 0,04 | 1,44 | 0,288 | 0,048 | 0,0576 | 4 |
1 | 0,2 | 1,4 | 0,28 | 0,04 | 1,96 | 0,392 | 0,056 | 0,0784 | 4,3 |
1 | 0,2 | 1,6 | 0,32 | 0,04 | 2,56 | 0,512 | 0,064 | 0,1024 | 4,5 |
1 | 0,2 | 1,8 | 0,36 | 0,04 | 3,24 | 0,648 | 0,072 | 0,1296 | 4,7 |
1 | 0,2 | 2 | 0,4 | 0,04 | 4 | 0,8 | 0,08 | 0,16 | 4,9 |
1 | 0,25 | 0,2 | 0,05 | 0,0625 | 0,04 | 0,01 | 0,0125 | 0,0025 | 1,2 |
1 | 0,25 | 0,4 | 0,1 | 0,0625 | 0,16 | 0,04 | 0,025 | 0,01 | 2,6 |
1 | 0,25 | 0,6 | 0,15 | 0,0625 | 0,36 | 0,09 | 0,0375 | 0,0225 | 3,5 |
1 | 0,25 | 0,8 | 0,2 | 0,0625 | 0,64 | 0,16 | 0,05 | 0,04 | 4 |
1 | 0,25 | 1 | 0,25 | 0,0625 | 1 | 0,25 | 0,0625 | 0,0625 | 4,4 |
1 | 0,25 | 1,2 | 0,3 | 0,0625 | 1,44 | 0,36 | 0,075 | 0,09 | 4,7 |
1 | 0,25 | 1,4 | 0,35 | 0,0625 | 1,96 | 0,49 | 0,0875 | 0,1225 | 4,9 |
1 | 0,25 | 1,6 | 0,4 | 0,0625 | 2,56 | 0,64 | 0,1 | 0,16 | 5,2 |
1 | 0,25 | 1,8 | 0,45 | 0,0625 | 3,24 | 0,81 | 0,1125 | 0,2025 | 5,4 |
1 | 0,25 | 2 | 0,5 | 0,0625 | 4 | 1 | 0,125 | 0,25 | 5,5 |
1 | 0,3 | 0,2 | 0,06 | 0,09 | 0,04 | 0,012 | 0,018 | 0,0036 | 1,2 |
1 | 0,3 | 0,4 | 0,12 | 0,09 | 0,16 | 0,048 | 0,036 | 0,0144 | 2,6 |
1 | 0,3 | 0,6 | 0,18 | 0,09 | 0,36 | 0,108 | 0,054 | 0,0324 | 3,8 |
1 | 0,3 | 0,8 | 0,24 | 0,09 | 0,64 | 0,192 | 0,072 | 0,0576 | 4,4 |
1 | 0,3 | 1 | 0,3 | 0,09 | 1 | 0,3 | 0,09 | 0,09 | 4,8 |
1 | 0,3 | 1,2 | 0,36 | 0,09 | 1,44 | 0,432 | 0,108 | 0,1296 | 5,2 |
1 | 0,3 | 1,4 | 0,42 | 0,09 | 1,96 | 0,588 | 0,126 | 0,1764 | 5,4 |
1 | 0,3 | 1,6 | 0,48 | 0,09 | 2,56 | 0,768 | 0,144 | 0,2304 | 5,7 |
1 | 0,3 | 1,8 | 0,54 | 0,09 | 3,24 | 0,972 | 0,162 | 0,2916 | 5,9 |
1 | 0,35 | 0,2 | 0,07 | 0,1225 | 0,04 | 0,014 | 0,0245 | 0,0049 | 1,2 |
1 | 0,35 | 0,4 | 0,14 | 0,1225 | 0,16 | 0,056 | 0,049 | 0,0196 | 2,6 |
1 | 0,35 | 0,6 | 0,21 | 0,1225 | 0,36 | 0,126 | 0,0735 | 0,0441 | 3,8 |
1 | 0,35 | 0,8 | 0,28 | 0,1225 | 0,64 | 0,224 | 0,098 | 0,0784 | 4,8 |
1 | 0,35 | 1 | 0,35 | 0,1225 | 1 | 0,35 | 0,1225 | 0,1225 | 5,3 |
1 | 0,35 | 1,2 | 0,42 | 0,1225 | 1,44 | 0,504 | 0,147 | 0,1764 | 5,6 |
1 | 0,35 | 1,4 | 0,49 | 0,1225 | 1,96 | 0,686 | 0,1715 | 0,2401 | 5,9 |
1 | 0,35 | 1,6 | 0,56 | 0,1225 | 2,56 | 0,896 | 0,196 | 0,3136 | 6,1 |
1 | 0,35 | 1,8 | 0,63 | 0,1225 | 3,24 | 1,134 | 0,2205 | 0,3969 | 6,3 |
1 | 0,4 | 0,2 | 0,08 | 0,16 | 0,04 | 0,016 | 0,032 | 0,0064 | 1,2 |
1 | 0,4 | 0,4 | 0,16 | 0,16 | 0,16 | 0,064 | 0,064 | 0,0256 | 2,6 |
1 | 0,4 | 0,6 | 0,24 | 0,16 | 0,36 | 0,144 | 0,096 | 0,0576 | 3,8 |
1 | 0,4 | 0,8 | 0,32 | 0,16 | 0,64 | 0,256 | 0,128 | 0,1024 | 4,9 |
1 | 0,4 | 1 | 0,4 | 0,16 | 1 | 0,4 | 0,16 | 0,16 | 5,6 |
1 | 0,4 | 1,2 | 0,48 | 0,16 | 1,44 | 0,576 | 0,192 | 0,2304 | 6 |
1 | 0,4 | 1,4 | 0,56 | 0,16 | 1,96 | 0,784 | 0,224 | 0,3136 | 6,3 |
1 | 0,4 | 1,6 | 0,64 | 0,16 | 2,56 | 1,024 | 0,256 | 0,4096 | 6,6 |
Скористаємося цією таблицею для визначення функції відгуку, яка встановлює аналітичний зв’язок між ІК – параметром оптимізації і незалежними змінними ІБ, UКЕ – факторами. Для цього формуємо матрицю Х – вектор значення факторів, матрицю Y – відгук технічної системи. Далі знаходимо матрицю (ХТ · Х)-1, яка називається матрицею похибок або матрицею коваріацій. Вона має наступний вигляд: