Смекни!
smekni.com

Модернизация, телекоммуникационного оборудования в ЗАО "Кузбассэнергосвязь" (стр. 7 из 16)

Дисперсия – это рассеивание во времени спектральных или модовых составляющих оптического сигнала, которое приводит к увеличению длительности импульса оптического излучения при распространении его по ОВ, рисунок 8.2.


Рисунок 8.2 – Искажение формы импульсов вследствие дисперсии.

Полная классификация составляющих дисперсии оптического волокна приведена на рисунке 8.3.

Рисунок 8.3 – Классификация составляющих дисперсии оптического волокна.

Модовая (межмодовая) дисперсия обусловлена наличием большого числа мод, каждая из которых распространяется со своей скоростью, и имеет место только в многомодовом волокне.

Основной причиной возникновения хроматической (частотной) дисперсии является некогерентность источников излучения, реально работающих в спектре длин волн. Хроматическая дисперсия складывается из волноводной (внутримодовой) (τвв), материальной (τмат) и профильной (τпр):

τхр = τмат + τвв + τпр (5.2.6)

Волноводная (внутримодовая) дисперсия обусловлена процессами внутри моды. Она характеризуется направляющими свойствами сердцевины ОВ, а именно: зависимостью групповой скорости моды от длины волны оптического излучения, что приводит к различию скоростей распространения частотных составляющих излучаемого спектра.

Материальная дисперсия обусловлена зависимостью показателя преломления сердцевины и оболочки от длины волны оптического излучения.

К основным причинам возникновения профильной дисперсии относятся поперечные и малые продольные отклонения геометрических размеров и формы волокна. Они могут возникать в процессе изготовления ОВ, строительства и эксплуатации ВОЛC.

Материальную, волноводную, профильную дисперсии определим по формулам [10]:

τмат=∆λ М(λ), (5.2.7)

τвв=∆λ В(λ), (5.2.8)

τпр=∆λ П(λ), (5.2.9)

где ∆λ = 0,5 ширина спектра источника излучения, нм

(для выбранной системы передачи);

М(λ)=-18 пс/нм∙км удельная дисперсия материала;

В(λ)=12 пс/нм∙км удельная волноводная дисперсия;

П(λ)=5,5 пс/нм∙км удельная профильная дисперсия.

По формулам (5.2.7; 5.2.8; 5.2.9) рассчитаем материальную, волноводную, профильную дисперсии:

τмат=0,5 ∙ (-18)=-9 пс/км,

τвв= 0,5 ∙ 12=6 пс/км,

τпр=0,5 ∙ 5,5=2,75 пс/км

Поляризационная модовая дисперсия возникает вследствие различной скорости распространения двух взаимно перпендикулярных поляризационных составляющих моды. Главная физическая причина появления PMD – некруглость профиля сердцевины одномодового волокна.

PMD типового волокна, как правило составляет от 0,5 до 0,2

.

Поляризационная модовая дисперсия начинает сказываться только при скорости передачи выше 2,5 Гбит/с, поэтому при расчете ее не учитываем.

Результирующая хроматическая дисперсия равна:

τхр = -9 + 6 + 2,75 = - 0,5 пс/км

Полоса частот DF, пропускаемая световодом определяет объем информации, который можно передать по ОВ. Так как импульс на приеме приходит искаженным (вследствие различия скоростей распространения в ОВ отдельных частотных составляющих сигнала), то происходит ограничение полосы пропускания сигнала. Дисперсия (t) связана с полосой пропускания следующим соотношением [10]:

(5.2.10)

Определим полосу пропускания волоконного световода:

= 880 ГГц∙км

8.3 Расчет длины регенерационного участка

8.3.1 Расчет количества и помехоустойчивости линейных регенераторов

Рис.8.4 Блок схема линейного регенератора (РЛ)

Характеристики линейного регенератора:

· Энергетический бюджет:

, (1)

где a[дБ/км], L - затухание и длина ОВ, PПОМ, Pmin – пиковая мощность световых импульсов на выходе ПОМ и чувствительность ПРОМ соответственно.

· Скоростной бюджет ВОСП

(2)

где τi – быстродействие отдельных компонент ВОСП;

- общее быстродействие системы.

В случае NRZ – кода допустимое время нарастания и спада

может достигать 70% от периода, т.е.:

, (3)

где B – битовая скорость. Для бифазных кодов:

. (4)

Составляющими суммы в (2) являются:

- быстродействие ПОМ и его контроллера τпом;

- быстродействие ПРОМ τпром; - быстродействие ОК:

;
, (5)

где D- коэффициент хроматической дисперсии ОВ;

- уширение оптического сигнала, связанное с межмодовой дисперсией в многомодовом ОВ;
- полоса частот ОВ длиной 1км., которая является справочной величиной.

· В условиях, когда чувствительность РЛ определяется тепловым шумом с гауссовой статистикой его коэффициент битовых ошибок pош определяется формулой:

, (6)

где Ф(х)- табулированная функция ошибок

(7)

· Распространенная аппроксимация функции ошибок:

, (8)

· Величина pош полностью определяется Q-фактором помехоустойчивости ЦСП:

, (9)

где U1, U0 - средние уровни напряжений на выходе фотоприемника на тактовых интервалах (ТИ) длительностью

при передаче 1 и 0 соответственно; s1 и s0 - среднеквадратичные уровни шумовых напряжений на указанных ТИ.

· Выражение (9) справедливо, если пороговый уровень Uпор решающего устройства ПРОМ установлен равным:

. (10)

· Параметры U1, U0, s1 и s0 в выражении для Q-фактора шумящего ПУ можно выразить через соотношение чисел сигнальных и шумовых фотоэлектронов на анализируемом ТИ:

(11)

где nc- среднее число сигнальных фотоэлектронов на ТИ:

(12)

, M, F(M)- квантовая эффективность коэффициент лавинного умножения и коэффициент шума лавинного ФД; Для p-i-n диода F(M)=1. Для ЛФД:
, где:

(13)

- мощность оптического сигнала;
Дж/Гц – постоянная Планка;

(14)

- среднее число фотоэлектронов темнового тока

ФД на ТИ, определяющее его дробовой шум;

Кл – заряд электрона; T – длительность ТИ;

G- суммарный коэффициент шума репитеров (ВОУ) регенерационного участка длиной L,

(15)

где

- расстояние между репитерами (ВОУ);
- коэффициент затухания сигнала в ОВ;

- коэффициент инверсии ВОУ, определяющий его шумовые свойства.

(16)

безразмерный температурный параметр, определяющий уровень шумов входной цепи и усилителя ПРОМ;