Модулятори оптичних сигналів
Вступ
Однією з найважливіших задач волоконної оптики в зв'язку є модулювання оптичних сигналів, яка потребує використання різніх фізичніх ефектів.
Нижче будуть розглянуто використання акустооптичних і електрооптичних ефектів.
1. Акустооптичнi модулятори
Акустооптичнi модулятори широко використовуються у волоконній оптиці завдяки трьом основним властивостям: можливості переключення луча по двох напрямках; модуляції інтенсивності оптичного променя; можливості зсуву оптичної частоти.
Принцип дії акустооптичного модулятора заснований на залежності показника заломлення ряду оптично прозорих матеріалів від зовнішнього тиску.
Такими матеріалами є
Рисунок 1 – Дифракційна решітка Брегга
Дана решітка забезпечує часткове відбиття вхідного променя і переміщається з акустичною швидкістю
При цьому вхідний і вихідний промені мають той самий кут
де
т – порядок переломленого променя;
За межами кристалу найбільший інтерес представляє кут Брегга першого порядку, що може бути обчислений з вищенаведених рівнянь за допомогою закону Снеллiуса, застосованого до межи між кристалом і повітрям
Звідси видно, що в даному виразу вiдсутнiй показник заломлення, тому при фіксованій швидкості акустичної хвилі кут Брегга виявляється залежним тільки від частоти генератора акустичної хвилі й оптичної довжини хвилі. Типові кути Брегга становлять значення близько 1°, тому для поділу променів необхідно використовувати горизонтальну структуру модулятора.
Для модуляції інтенсивності відхиленого оптичного променя потужність генератора акустичних коливань повинна модулюватися по амплітуді, а переключення досягається шляхом вмикання і вимикання сигналу генератора.
При цьому інтенсивність
З останнього виразу видно, що акустооптичний модулятор має нелінійну функцію перетворення (рис. 2), яка представляється зазвичай у вигляді
де
Рисунок 2 – Нелінійна функція перетворення акустооптичного модулятора
Як видно з даної залежності, для здійснення аналогової модуляції потрібен зсув робочої точки в лінійну область, забезпечуючи тим самим необхідне значення контрастності і глибини модуляції лазерного випромінювання, що визначаються відомими виразу
де
У результаті акустооптичної взаємодії частота лазерного випромінювання зміщається на величину, рівну акустичній частоті
2. Електрооптичнi модулятори
В даний час найбільш розповсюдженим оптичним модулятором є чарунка Поккельса, принцип дії якої заснований на двопромінєзаломленні у кристаллах.
У залежності від того, як (паралельно чи перпендикулярно) щодо розповсюджуваної в кристалі світлової хвилі прикладено електричне поле, чарунки Поккельса поділяються на чарунки подовжнього чи поперечного типу.
Тут слід зазначити, що для забезпечення введення в чарунку оптичного випромінювання в чарунках подовжнього типу необхідно використовувати прозорі чи кільцеві модулюючi електроди. Популярним матеріалом для таких чарунок є KDP (хімічна формула КН2Р04), тому що в цьому матеріалі напруженість електричного поля визначає відмінність у показниках заломлення по
Рисунок 3 – Схема керування інтенсивністю вихідного світлового променя
У вихідному стані, коли до чарунки не прикладена напруга, вона прозора для світлового променя, і він блокується аналізатором, тому що останній розташований під кутом 900 до поляризованого вхідного випромінювання.
При збільшенні напруги здійснюється перетворення лінійного стану поляризації вхідного променя в один з наступних станів: круговий, еліптичний чи лінійний. При досягненні максимальної напруги чарунка здійснює напівхвильове уповільнення, обертаючи вхідну поляризацію на 900. У цьому випадку аналізатор стає цілком прозорим для вихідного променя, і вхідне випромінювання надходить на вихід пристрою. Таким чином, напруга, прикладена до чарунки Поккельса, визначає рівень потужності оптичного сигналу на виході пристрою, а його зміна приводить до модуляції світлової хвилі.
Чарунки Поккельса дозволяють здійснювати модуляцію світлової хвилі, що поширюється, у смузі частот від 0 Гц до 1 ГГЦ і вище, при цьому глибина модуляції може досягати значень більш 99.9%. Негативна сторона звичайних чарунок Поккельса полягає у використанні високої модулюючої напруги. Тому основні зусилля розроблювачів були сконцентровані на усунення цього недоліку застосуванням сучасних мікроелектронних технологій введення одномодових оптичних хвилеводів у електрооптичний матеріал, такий, як, наприклад, нiобат літію (LiNbO3). У цьому випадку дифузійний одномодовий оптичний хвилевід виконується розділеним на дві гілки, убудовані в чарунку Поккельса, утворюючи тим самим диференціальну структуру (рис. 4).
Рисунок 4 – Дифузійний одномодовий оптичний хвилевід
Тому прикладене до чарунки електричне поле збільшує швидкість поширення світлової хвилі в одній гілці і зменшує в другій гілці хвилеводу. Звичайно, якщо довжина взаємодії складає 1 см, досить прикласти близько 8 В, щоб досягти повного придушення, що має місце при різниці фаз гілок, рівної 180°. Іноді один із двох хвилеводів виконують на