Для большинства логических методов характерна большая трудоемкость, поскольку во время поиска доказательства возможен полный перебор вариантов. Поэтому данный подход требует эффективной реализации вычислительного процесса, и хорошая работа обычно гарантируется при сравнительно небольшом размере базы данных.
Под структурным подходом мы подразумеваем здесь попытки построения ИИ путем моделирования структуры человеческого мозга. Одной из первых таких попыток был перцептрон Френка Розенблатта. Основной моделируемой структурной единицей в перцептронах (как и в большинстве других вариантов моделирования мозга) является нейрон.
Позднее возникли и другие модели, которые в простонародье обычно известны под термином "нейронные сети" (НС). Эти модели различаются по строению отдельных нейронов, по топологии связей между ними и по алгоритмам обучения. Среди наиболее известных сейчас вариантов НС можно назвать НС с обратным распространением ошибки, сети Хопфилда, стохастические нейронные сети.
НС наиболее успешно применяются в задачах распознавания образов, в том числе сильно зашумленных, однако имеются и примеры успешного применения их для построения собственно систем ИИ, это уже ранее упоминавшийся ТАИР.
Для моделей, построенных по мотивам человеческого мозга характерна не слишком большая выразительность, легкое распараллеливание алгоритмов, и связанная с этим высокая производительность параллельно реализованных НС. Также для таких сетей характерно одно свойство, которое очень сближает их с человеческим мозгом — нейронные сети работают даже при условии неполной информации об окружающей среде, то есть, как и человек, они на вопросы могут отвечать не только "да" и "нет" но и "не знаю точно, но скорее да".
Довольно большое распространение получил и эволюционный подход. При построении систем ИИ по данному подходу основное внимание уделяется построению начальной модели, и правилам, по которым она может изменяться (эволюционировать). Причем модель может быть составлена по самым различным методам, это может быть и НС и набор логических правил и любая другая модель. После этого мы включаем компьютер и он, на основании проверки моделей отбирает самые лучшие из них, на основании которых по самым различным правилам генерируются новые модели, из которых опять выбираются самые лучшие и т. д.
В принципе можно сказать, что эволюционных моделей как таковых не существует, существует только эволюционные алгоритмы обучения, но модели, полученные при эволюционном подходе, имеют некоторые характерные особенности, что позволяет выделить их в отдельный класс.
Такими особенностями являются перенесение основной работы разработчика с построения модели на алгоритм ее модификации и то, что полученные модели практически не сопутствуют извлечению новых знаний о среде, окружающей систему ИИ, то есть она становится как бы вещью в себе.
Еще один широко используемый подход к построению систем ИИ — имитационный. Данный подход является классическим для кибернетики с одним из ее базовых понятий — "черным ящиком" (ЧЯ). ЧЯ — устройство, программный модуль или набор данных, информация о внутренней структуре и содержании которых отсутствуют полностью, но известны спецификации входных и выходных данных. Объект, поведение которого имитируется, как раз и представляет собой такой "черный ящик". Нам не важно, что у него и у модели внутри и как он функционирует, главное, чтобы наша модель в аналогичных ситуациях вела себя точно так же.
Таким образом, здесь моделируется другое свойство человека — способность копировать то, что делают другие, не вдаваясь в подробности, зачем это нужно. Зачастую эта способность экономит ему массу времени, особенно в начале его жизни.
Основным недостатком имитационного подхода также является низкая информационная способность большинства моделей, построенных с его помощью.
С чем связана одна очень интересная идея. Кто бы хотел жить вечно? Я думаю, что почти все ответят на этот вопрос "я".
Представим себе, что за нами наблюдает какое-то устройство, которое следит за тем, что в каких ситуациях мы делаем, говорим. Наблюдение идет за величинами, которые поступают к нам на вход (зрение, слух, вкус, тактильные, вестибулярные и т. д.) и за величинами, которые выходят от нас (речь, движение и др.). Таким образом, человек выступает здесь как типичный ЧЯ.
Далее это устройство пытается отстроить какую-то модель таким образом, чтобы при определенных сигналах на входе человека, она выдавала на выходе те же данные, что и человек. Если данная затея будет когда-нибудь реализована, то для всех посторонних наблюдателей такая модель будет той же личностью, что и реальный человек. А после его смерти она, будет высказывать те мысли, которые предположительно высказывал бы и смоделированный человек.
Мы можем пойти дальше и скопировать эту модель и получить брата близнеца с точно такими же "мыслями".
Можно сказать, что "это конечно все интересно, но причем тут я? Ведь эта модель, только для других будет являться мной, но внутри ее будет пустота. Копируются только внешние атрибуты, но я после смерти уже не буду думать, мое сознание погаснет (для верующих людей слово "погаснет" необходимо заменить на "покинет этот мир") ". Что ж это так. Но попробуем пойти дальше.
Согласно философским представлениям, сознание представляет собой сравнительно небольшую надстройку над нашим подсознанием, которая следит за активностью некоторых центров головного мозга, таких как центр речи, конечной обработки зрительных образов, после чего "возвращает" эти образы на начальные ступени обработки данной информации. При этом происходит повторная обработка этих образов, мы как бы видим и слышим, что думает наш мозг. При этом появляется возможность мысленного моделирования окружающей действительности при нашем "активном" участии в данном процессе. И именно наш процесс наблюдения за деятельностью этих немногих центров является тем, что мы называем сознанием. Если мы "видим" и "слышим" наши мысли, мы в сознании, если нет, то мы находимся в бессознательном состоянии.
Если бы мы смогли смоделировать работу именно этих немногих "сознательных" нервных центров (работа которых правда основана на деятельности всего остального мозга) в качестве одного ЧЯ, и работу "супервизора" в качестве другого ЧЯ, то можно было бы с уверенностью говорить, что "да, данная модель думает, причем так же, как и я". Здесь я ничего не хочу говорить о том, как получить данные о работе этих нервных центров, поскольку на мой взгляд сегодня нет ничего такого, что позволило бы следить за мозгом человека годами и при этом не мешало бы его работе и жизни.
И заканчивая ознакомление с различными методами и подходами к построению систем ИИ, хотелось бы отметить, что на практике очень четкой границы между ними нет. Очень часто встречаются смешанные системы, где часть работы выполняется по одному типу, а часть по-другому.
Тьюринг назвал свое абстрактное механическое устройство "универсальной машиной", поскольку она должна была справляться с любой допустимой, то есть теоретически разрешимой задачей — математической или логической. Данные должны были вводиться в машину на бумажной ленте, поделенной на клетки — ячейки. Каждая такая ячейка либо содержала символ, либо была пустой. Машина могла не только обрабатывать записанные на ленте символы, но и изменять их, стирая старые и записывая новые в соответствии с инструкциями, хранимыми в ее внутренней памяти. Некоторые идеи Тьюринга были, в конечном счете, воплощены в реальных машинах.
Алан Тьюринг участвовал в послевоенные годы в создании мощного компьютера — машины с хранимыми в памяти программами, ряд свойств которой он взял от своей гипотетической универсальной машины. Опытный образец компьютера ACE (Automatic Computing Engine — автоматическое вычислительное устройство) вступил в эксплуатацию в мае 1950 г. Тьюринг увлекался проблемами машинного интеллекта (он даже придумал тест, который по его мнению позволял выяснить, может ли машина мыслить).
Вероятно, Тьюринг мог бы еще многого достигнуть в этой области, но этому мешала его экцентричность. В 1954г., занимаясь изготовлением химических веществ из обычных бытовых продуктов, Тьюринг получил цианистый калий и принял его.
Нельзя сказать, что идея "мыслящей" машины была абсолютно новой.Достаточно вспомнить Раймонда Луллия, который еще в 1272 году предложил создать устройство, способное произвести все возможные знания, составляя слова случайным образом. Другой работой Луллия было логическое доказательство истинности христианства - задача того же масштаба и той же степени невыполнимости. Позднее, в 1726 году, эта идея Луллия была высмеяна Джонатаном Свифтом в его "Путешествии Гулливера", где была описана попытка сумасшедшего профессора привести в действие усилиями сорока студентов "машину размером 20 футов в каждом измерении", которая должна была произвести все знания о мире, складывая слова всех языков, написанные на обрывках бумажной ленты.