рис. 3. Схемы УЗ-микросварки с токовой активацией (а) и ИК-активацией (б): 1- генератор УЗ-колебаний; 2- преобразователь; 3- волновод; 4- инструмент; 5- проволока; 6- контактная площадка; 7- устройство токовой активации; 8- блок питания; 9- блок управления; 10 - блок ИК-активации
ИК-подогрев соединяемых элементов при УЗ-микросварке снижает до минимума эффект проскальзывания проволочного вывода, увеличивает его пластичность, степень деформации и фактическую площадь контакта вывода с контактной площадкой (рис. 3, б). Кроме того, тепловая активация соединения до температур, не превышающих температуру рекристаллизации металлов, участвующих в соединении, ускоряет диффузионные процессы в зоне контакта, что в итоге способствует увеличению прочности микросварных соединений и повышению надежности изделий.
Термозвуковая сварка (ТЗС) находит все возрастающее применение при сборке изделий микроэлектроники. В ТЗС соединения формируются в результате совместного действия температуры, энергии ультразвуковых колебаний сварочного инструмента и усилия нагружения инструмента. Данный способ сварки как бы объединяет отдельные качества термокомпрессионной и УЗ-сварки, обеспечивает высокое качество соединения при существенном смягчении режимов сварки, прежде всего температуры. ТЗС используется в первую очередь при автоматизированной сборке приборов, критичных к температурам свыше 200-250 °С. Применим этот способ сварки и для сборки толстопленочных ГИС. Качественные, устойчивые к повышенным температурам (150 °С) и термоциклированию (100 циклов; –55...+150 °С) соединения золотой проволоки с медными печатными проводниками получаются ТЗС при температуре подложки 105-200 °С. Практически ТЗС начинают широко применять и для сборки ИМС и БИС массовых серий с целью смягчения режимов и снижения критичности сварочного процесса к колебаниям качества соединяемых материалов.
Из всех видов сварки, применяемых в производстве изделий микроэлектроники, ТЗС является наиболее сложной в реализации, но отличается большой гибкостью в выборе режимов, а поэтому весьма перспективна для автоматизированной сборки. Использование при ТЗС ультразвуковой энергии наряду со снижением температуры обусловило ряд преимуществ: увеличение скорости, относительная легкость установления приемлемых режимов, улучшение свариваемости более широкой номенклатуры материалов соединяемых поверхностей. Важным достоинством ТЗС по сравнению с УЗС является меньшая критичность к жесткости конструктивных элементов корпуса.
Термокомпрессионной сваркой (ТКС) называют микросварку давлением в твердой фазе элементов, нагреваемых от постороннего источника теплоты, с локальной пластической деформацией в зоне сварки. Различают термокомпрессионную микросварку с общим, импульсным, косвенным и комбинированным нагревом.
Основными параметрами режима термокомпрессии являются: усилие сжатия соединяемых элементов F, температура нагрева инструмента Т, длительность выдержки под давлением t.
Выбор усилия сжатия F определяется допустимой деформацией присоединяемого проводника, которая для золотой проволоки составляет 50-70 %, алюминиевой - 60-80 %. Температура нагрева не должна превышать температуру образования эвтектики соединяемых материалов и находится в пределах 250-450 °С. Длительность выдержки выбирается в зависимости от сочетаний свариваемых материалов в диапазоне 1-10 для достижения максимальной прочности соединения.
Для сварки применяют золотую проволоку диаметром 30 мкм, которую обезжиривают в спирте и отжигают в течение 5 мин при температуре 600 °С. ТКС проводится внахлест (клином) (рис. 4, а) или встык, с образованием шарика (рис. 4, б). Шарик из золотой проволоки образуется в пламени водородной горелки или электрическим разрядом. Диаметр шарика составляет 1,5-2 диаметра проволоки. Правильная форма шарика и отсутствие оксидов на его поверхности улучшают качество соединений.
1 – проволока; 2 – инструмент; 3 – подложка
рис. 4. Схемы термокомпрессионной сварки:
Для ТКС рекомендуются рубиновые капилляры, имеющие более высокие износостойкость рабочих поверхностей, коррозионную стойкость и чистоту поверхности. Обозначение капилляра: КТ51-25-150-2-30 (КТ - капилляр для термокомпрессионной сварки, 25 - диаметр проволоки, 150 - диаметр D, 30 - размер R). Наибольшая прочность соединений достигается при использовании инструмента сложной формы: с ребром жесткости или типа "рыбий глаз" (рис. 5).
а- обычное; б- с ребрами жесткости; в- типа “рыбий глаз”
рис. 5. Типы термокомпрессионных соединений
После сварки в процессе электротренировки возможно появление интерметаллидов AuxAly: пурпурного AuAl2, затем рыжего, а через некоторое время фазы черного цвета, имеющих низкую прочность и высокое электрическое сопротивление. Скорость процесса разрушения соединения возрастает при повышении температуры. Расчеты показывают, что при температуре 100 °С падение прочности вдвое произойдет через 10 сут., а следующее падение прочности вдвое - через 7 лет.
Повышения качества ТКС добиваются подачей в зону сварки осушенного защитного газа (аргона, азота, формиргаза) и снижением температуры. Для ТКС используется современное автоматическое оборудование (табл. 2).
Табл. 2 - Характеристика установок термокомпрессионной сварки
Параметры | ЭМ-490 | ЭМ-4030 | ЭМ-4060 | Hitachi (Япония) |
Диаметр вывода, мкм | 20-60 | 20-60 | 20-60 | 20-60 |
Способ соединения | Встык, внахлестку | Внахлестку | Встык, внахлестку | Встык |
Температура нагрева, °С | 250-400 | 250-450 | 250-450 | До 450 |
Контактное усилие, Н | 0,4-3 | 0,4-3 | 0,4-3 | 0,3-2,5 |
Время сварки, с | 0,05-0,3 | 0,4-3,6 | 0,04-0,3 | 0,05-4,0 |
Производительность, сварок/ч | 12 500 | 300 | 10 000 | 18 000 |
Преимущества ТКС заключаются в следующем: возможность сварки прецизионных элементов с минимальной толщиной до 5 мкм, некритичность к небольшим изменениям (±10 %) параметров режима сварки, возможность групповой технологии контактирования. К недостаткам следует отнести: небольшое число хорошо свариваемых материалов, ограничение толщин свариваемых элементов до 0,13 мм, сильную зависимость качества соединений от состояния свариваемых поверхностей, необходимость подогрева деталей до 350-400 °С, увеличенное значение переходного сопротивления контактов, возможность образования интерметаллидов, ухудшающих качество и надежность соединения.
Сварка расщепленным (сдвоенным) электродом применяется в технологии электрического монтажа, в частности при получении контактных соединений планарных выводов ИМС и ЭРЭ с контактными площадками плат, плоских ленточных проводов с выводами печатных разъемов и др. Метод пригоден для сварки таких материалов, как медь, серебро, золото, алюминий, никель толщиной 0,03-0,5 мм. Подготовка свариваемых поверхностей заключается в предварительном отжиге материалов для снятия внутренних напряжений и увеличения пластичности, обезжиривании поверхностей химическими растворами. Сварка выполняется электродом, изготовленным из вольфрама или молибдена в виде двух токопроводящих частей, разделенных зазором h = 0,02-0,25 мм, либо с помощью диэлектрической прокладки (рис. 6.).
Сварку осуществляют одним или несколькими импульсами конденсаторного разряда с различной длительностью, мощностью и интервалами между импульсами. Усилие прижима электродов при сварке 0,2-1,5 Н создается в момент нагрева до максимальной температуры и снимается до окончания действия импульса тока. При этом ИМС и ПП получают незначительную термическую нагрузку. Сварку проводят на установках типа "Контакт-3А" (производительностью 250 сварок в час), ЭМ-425А, ЭМ-220, ЭМ-441 (800-2300 сварок в час) при длительности сварочного импульса 0,02-0,8 с.
1- электроды; 2- вывод ИМС;3- плата; 4- контактная площадка
рис. 6. Схема сварки расщепленным электродом
К недостаткам рассмотренного способа относятся необходимость никелирования плат и золочения выводов ИМС, точное позиционирование выводов, трудность группового контактирования, более высокая стоимость по сравнению с пайкой.
Лазерную микросварку использует для проводов в полиуретановой изоляции, коваровых и никелевых выводов радиоэлементов с контактными площадками, плат, проволочных выводов ИМС внахлестку, проволоки малых диаметров из золота, меди, алюминия с напыленными на керамику, стекло, ситалл металлическими слоями и т. п. Преимущества лазерного излучения:
· высокая локализация мощности в зоне нагрева (до 1000 МВт/м2);
· безынерционность воздействия, что позволяет вести нагрев импульсами малой длительности (1-10 мс) и очень точно дозировать энергию излучения;
· очень малая зона термического влияния (0,03-0,25 мм) при минимальном диаметре пятна нагрева 0,01 мм;
· не требуется вакуум, работа может выполняться в атмосфере любого состава;
· возможны соединения материалов с существенными различиями оптических, теплофизических и механических свойств;
· легкость автоматизации путем применения микропроцессоров и транспортных систем.