Смекни!
smekni.com

Нелинейные и линейные модели биполярного транзистора (стр. 2 из 3)

, (11)

из которого следует: при UЭ =0 (IЭ =0)

(
).

Дифференциальное сопротивление

(А – постоянный коэффициент, зависящий от свойств Т) обусловлено эффектом модуляции толщины базы, который тем сильнее, чем меньше |UК | и больше удельное сопротивление базы. В случае маломощных БПТ значения rК лежат в пределах от сотен до тысяч килоом.

Коэффициент внутренней обратной связи по напряжению

(B>0 – постоянный коэффициент, зависящий от свойств Т) характеризует влияние напряжения UК на напряжение UЭ из-за модуляции толщины базы и имеет отрицательный знак, так как увеличение |UК | уменьшает эмиттерное напряжение. Обычно параметр |mЭК| имеет малые значения порядка 10–6…10–4, что означает слабое смещение входныххарактеристик при изменении коллекторного напряжения. Иногда отрицательную обратную связь в БПТ отражают в модели не генератором mЭКUК, а диффузионным сопротивлением rБд базы, включенным последовательно с ее объемным сопротивлением rБ . При этом

.

В общем случае каждая из емкостей СК , СЭ переходов состоит из диффузионной (СКд , СЭд) и барьерной (СКб , СЭб) составляющих. Учитывая, что в активном режиме эмиттерный переход смещен в прямом направлении, а коллекторный – в обратном, с допустимой погрешностью можно положить: СЭЭд ; СККб . Емкости СЭд и СКб определяются так же, как в Д. Коллекторная емкость СК , шунтируя большое сопротивление rК , существенно влияет на работу Т, начиная с десятков килогерц. Наоборот, емкость СЭ обычно учитывают на частотах, превышающих десятки мегагерц.

Частотно-временные характеристики коэффициента a передачи, в основном определяемые динамическими свойствами коэффициента c переноса, задают комплексным коэффициентом

передачи тока в схеме с ОБ:

, (12)

где

– граничная частота коэффициента передачи тока в схеме с ОБ;

tD – среднее время пролета носителей (см. подраз. 1.2).

Малосигнальная Т-образная модель БПТ в схеме с ОЭ (рис.3, б) вытекает из соответствующей нелинейной модели (см. рис.2). В нее, в отличие от схемы с ОБ, входит дифференциальный коэффициент

а
бРис. 3. Малосигнальные Т-образные модели БПТ

передачи базового тока, который с учетом (11) равен

.(1.21)

Его динамические характеристики задают присутствующим в модели комплексным коэффициентом

, вытекающим из соотношений:

, (13)

где

– граничная частота коэффициента передачи тока в схеме с ОЭ.

В области высоких частот (

)
, где
– предельная частота коэффициента усиления тока, соответствующая значению
. При этом в справочниках чаще приводят значения параметра
, а не
, что связано с бόльшим удобством измерения. Иногда дают значения параметра
– максимальной частоты генерации (наибольшая частота, на которой способен работать Т в схеме автогенератора при оптимальной обратной связи). Приближенно
, где
– постоянная цепи обратной связи, характеризующая частотные и усилительные свойства Т, его устойчивость к самовозбуждению. Параметры
(
) и
в формуле выражены соответственно в мегагерцах и пикосекундах.

В схеме с ОБ при заданном токе IЭ приращение выходного напряжения падает полностью на коллекторном переходе (сопротивлением rБ пренебрегаем). В схеме с ОЭ при заданном токе IБ приращение напряжения UК распределяется между обоими переходами. В результате изменение тока IК сопровождается равным изменением тока IЭ (рис.3, а, б). Учитывая это и полагая дополнительно СК = 0, с помощью (12) приходим к операторному уравнению

для приращений, откуда при
имеем

, (14)

что на низких частотах соответствует

. Аналогично определим коллекторную емкость в схеме с ОЭ. Для этого с целью упрощения положим rК = ¥. Теперь для переходных процессов роль сопротивления rК играет емкостное сопротивление
(в операторной форме). Составляя далее уравнение для приращений, находим

, (15)

что на низких частотах соответствует

.

Таким образом, входящие в модель БПТ в схеме с ОЭ параметры

и
являются комплексными (операторными), что необходимо учитывать при анализе быстрых процессов. При этом, как следует из (14) и (15), в схемах с ОЭ и ОБ постоянная времени коллекторного перехода имеет одинаковое значение
.

Исключительное значение для стабильности схем на БПТ имеет температурная зависимость IК0 (T), приводящая к смещению выходных и входных характеристик Т. Поведение функции IК0 (T) применительно к Д: она имеет экспоненциальный характер; температура удвоения составляет примерно 8 (5) оС для Ge (Si); у кремниевых транзисторов до температуры порядка 100 оС основную роль играет не тепловой ток, а ток термогенерации, который достаточно мал, что позволяет во многих случаях с ним не считаться. Аналогична Д и температурная зависимость UЭ (T) напряжения на эмит-терном переходе. При этом для кремниевых и германиевых Т значение температурного коэффициента e составляет примерно минус 2 мВ/град.

Помимо Т-образных на практике широко используются малосигнальные П-образные модели БПТ в схеме с ОЭ: основная и гибридная (схема Джиаколетто) (рис.4, а, б). В обеих моделях используются проводимости (комплексные

или активные g), а усилительным параметром является комплексная крутизна
. Наиболее распространена и специфична для БПТ гибридная П-образная схема (см. рис. 4, б), в которой выделено сопротивление rБ базы. Установим связь ее параметров с параметрами малосигнальной Т-образной модели (см. рис. 3, б).
а бРис. 4. Малосигнальные П-образные модели БПТ

Для выражения одних параметров через другие исключим сопротивление rБ, одинаковое в обеих схемах, и составим 4 уравнения: приравняем друг к другу входные (базовые) и выходные (коллекторные) токи обеих схем при заданном входном напряжении и коротком замыкании на выходе, а затем базовые напряжения и коллекторные токи при заданном выходном напряжении и холостом ходе на входе (аналогично системе h-параметров). Тогда при дополнительном условии

и
получим: