БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ
кафедра ЭТТ
РЕФЕРАТ на тему:
«Oсновные методы производства волоконных световодов»
МИНСК, 2008
Одномодовые световоды. Многомодовые световоды с и ступенчатым профилем. Волоконные световоды со специальными свойствами. Полимерные световоды.
По назначению волоконные световоды можно разделить на пять основных групп:
1.Одномодовые световоды для скоростных систем передачи и фазовых волоконно-оптических датчиков (ВОД). Эти световоды отличаются предельно низкими потерями (0,2 ... 1 дБ/км) и широкой полосой пропускания (1 ...100 ГГц-км).Сюда же можно отнести волокна с сохранением поляризации, необходимые для целого ряда датчиков и перспективных систем передачи с когерентным приемом. Типичные размеры световодов первой группы: диаметр сердцевины 5... 10 мкм, оболочки 125 мкм, числовая апертура 0,15 ... 0,2.
2.Многомодовые световоды с градиентным профилем показателя преломления, предназначенные для использования в системах передачи нарасстояния в несколько километров с полосой пропускания 100 ... 1000 МГц-км. Потери в таких волокнах лежат в пределах 0,5 ... 5 дБ/км, стандартные размеры: диаметр сердцевины 50 мкм, оболочки 125 мкм, типичное значение числовой апертуры около 0,2.
3.Многомодовые световоды со ступенчатым профилем показателя преломления, предназначенные для использования в локальных сетях, объектовых системах передачи и различных ВОД, с весьма умеренной полосой пропускания (10... 100МГц-км) и потерями 3 ... 10 дБ/км. Такие световоды имеют повышенную числовую апертуру (0,3 ... 0,6) и диаметр сердцевины 80 ... 400 мк, допускающие эффективное сопряжение с дешевыми и надежными источниками излучения.
4.Волоконные световоды со специальными свойствами, к которым относятся волокна целевого назначения для датчиков и других волоконно-оптических функциональных устройств: лазерные волокна (см. гл. 5), активированные редкоземельными ионами, волокна с пьезоэлектрической или магнитострикционной оболочкой и т. п.
5.Полимерные световоды со ступенчатым или градиентным профилем показателя преломления, отличающиеся высокой гибкостью, прочностью и низкой стоимостью. Область их применения ограничивается высокими потерями (100…500 дБ/км), поэтому используются они для передачи данных внутри ЭВМ, в роботах,в автомобильных датчиках и т. п.
6. Волокна для среднего ИК диапазона (Х — 2 ... 50 мкм) со сверхнизкими потерями.
Световоды первой, второй и отчасти третьей групп имеют одинаковую композицию и изготавливаются из кварцевого стекла, легированного различными добавками, изменяющими показатель преломления в нужную сторону. Кварцевое стекло имеет высокие однородность и чистоту, что обусловливает малые потери на рассеяние и поглощение (см. § 4.6), отличается высокой температурой плавления, химической и радиационной стойкостью. Технология производства высококачественных кварцевых волокон, как будет видно ниже, достаточно сложна, но доведена до промышленного уровня, обеспечивающего массовый выпуск без снижения качества.
Требования к характеристикам световодов третьей и четвертой групп не являются предельно жесткими, поэтому они изготавливаются из более дешевых материалов (многокомпонентные стекла) и по более простой технологии. Производство полимерных волокон является самым простым и дешевым в рассматриваемом ряду. Производство волокон шестой группы требует освоения новых материалов и технологий и находится в лабораторной стадии.
Наиболее распространенные в мировой практике способы изготовления высококачественных кварцевых волоконных световодов являются разновидности процесса химического осаждения основного стеклообразующего окисла SiO2 и легирующих окислов из парогазовой смеси CVD процесса (ChemicalVapourDeposition). Галоиды кремния, германия, бора, фосфора и т. п., входящие в состав парогазовой смеси, при высокой температуре реагируют с кислородом:
SiCl4 + O2 => SiO2 + 2Cl2GeCl4 + O2 => GeO2 +2Cl2 (1)
4BBr3 + 3O2 => 2B2O3 + 6Br3
4POCl3 + 3O22 => 2P2O5 + 6Cl2
В результате реакции образуется мелкодисперсная масса, напоминающая белую сажу, которая после прославления превращается в прозрачное стекло, содержащее около 90 % SiO2. Добавки легирующих окислов меняют коэффициент преломления в нужную сторону в соответствии с зависимостями. Содержание добавок в стекле регулируется в ходе процесса путем изменения состава парогазовой смеси галоидов, концентрации ее компонентов. Из рисунка 1 видно, что добавки окислов германия и фосфора повышают показатель преломления стекла, а добавка окиси бора снижает его.
Рисунок 1. Влияние легирующих окислов на коэффициент преломления
Минимальными потерями в области 1,3 и 1,5 мкм обладают кварцевые стекла, не содержащие бора, поэтому в последние годы в качестве присадки, снижающей показатель преломления, используется фтор, образующийся при окислении фреона CCl2F2 или фтористого углерода СF4. Естественно, что исходные компоненты процесса CVD должны быть высокой химической чистоты.
Во всех разновидностях процесса CVD производство волоконных световодов разделяется на две основные стадии. В первой стадии — изготовлении заготовки для вытяжки волокна — проявляются различия перечисленных вариантов, тогда как вторая стадия — вытяжка волокна из заготовки — одинакова по технологии и оборудованию для всех вариантов. Параметры заготовки во многом определяют характеристики волоконного световода, вытянутого из нее. Тип световода — одномодовый, многомодовый градиентный или ступенчатый — полностью определяется профилем показателя преломления заготовки. Все варианты процесса CVD позволяют организовать гибкое производство с быстрой перестройкой с одного типа световода на другой. Рассмотрим подробнее наиболее распространенный в настоящее время технологический метод.
Модифицированный процесс EVD (MCVD)
В этом способе заготовка изготавливается осаждением стеклообразующих окислов на внутреннюю поверхность кварцевой опорной трубы. Установка для производства заготовок методом MCVD схематически изображена на рисунке 2. В ней можно выделить три основных функциональных блока: блок формирования парогазовой смеси, тепломеханический станок, систему управления и контроля параметров процесса. Первыми операциями при производстве являются контроль и отбор опорных кварцевых труб, которые при вытяжке трансформируются в оболочку волоконного световода. Типовые размеры опорных труб: внешний диаметр 20 ... 25 мм, внутренний диаметр 16 ... 20 мм, длина около 1 м.
Опорная труба помещается в тепломеханический станок, в котором она вращается вокруг продольной оси со скоростью порядка 60 об/мин. Вдоль вращающейся опорной трубы со скоростью 20 см/мин перемещается кислородно-водородная горелка. В начале процесса производится полировка трубы в пламени горелки при температуре около 1600 "С, при которой оплавляются имеющиеся микротрещины. Парогазовая смесь образуется при прокачке газа — носителя (кислорода или инертных газов) через смесители, заполненные жидкими галоидами кремния, германия и т. п. Состав смеси и закон применения состава во времени в ходе процесса MCVD зависят от типа изготавливаемого световода (одномодовый, градиентный, ступенчатый) и формируется под управлением ЭВМ по заданной программе
Рисунок 2. Установка для производства заготовок методом MCVD:
1 - смеситель с жидким SiСl2; 2 - один из смесителей с легирующим галоидом; 3—вентили; 4—опорная трубка; 5—вращающиеся патроны; б—кислородно-водородная горелка; 7—система откачки и очистки продуктов реакции
Парогазовая смесь поступает внутрь опорной трубки, и в горячей зоне с температурой 1500 ...1700 °С, перемещающейся вдоль трубки вместе с движением горелки, происходит осаждение окислов 5Юг, СеО2 и других в виде ультрачистого мелкодисперсионного порошка. При последующем движении горелки вдоль трубки порошок проплавляется, превращаясь в слой стекла толщиной 1 ... 10 мкм. Легированное кварцевое стекло, получающееся в результате осаждения, является исключительно чистым в силу высокой чистоты исходных компонентов. Кроме того, в процессе MCVD происходит химическая осушка реагирующих материалов и осаждаемых слоев путем реакции
2Н2О + 2С12 => 4НС1 + О2 (2)
Хлор всегда присутствует в парогазовой смеси как продукт реакции окисления тетрахлоридов кремния и германия. В результате осажденное стекло содержит значительно меньшее число гидроксильных ионов ОН, чем опорная труба. По этой причине потери на поглощение в используемых спектральных диапазонах в осажденном стекле существенно меньше, чем в опорной трубе, и для снижения этих потерь в световоде в заготовке формируется внутренняя оболочка. Для этого первые несколько слоев (около 20) делаются с показателем преломления, равным показателю преломления трубы или несколько меньшим. Парогазовая смесь, вводимая в трубы, во время осаждения этих слоев содержит пары SiCl4 с добавкой ВВr3, что предпочтительнее фреона. Последующие слои формируют сердцевину будущего световода. Для градиентных световодов показатель преломления увеличивается от слоя к слою по заданному закону, близкому к параболическому; заготовки для волокон со ступенчатым профилем имеют однородную сердцевину с показателем преломления большим, чем в оболочке. Общее число слоев в сердцевине обычно равно 50 ... 80.
Как правило, для повышения показателя преломления используется только GeО2, однако температура осаждения его велика и, чтобы исключить деформацию опорной трубы, температуру осаждения снижают добавкой в парогазовую смесь РОСl3. Поскольку наличие в стекле окисла Р2О5 увеличивает поглощение в диапазоне длин волн 1,5 ... 1,7 мкм (поглощение на ионах Р—ОН), его концентрация не должна превышать 0,2% молярных. При этом температура осаждения снижается до 1650 °С.