Снижение надежности механических устройств при вибрации объясняется дополнительным нагружением их элементов динамическими силами и моментами и изменением характера разрушения деталей их усталостным повреждением. Наиболее опасным является резонансный режим работы, при котором частота вибраций совпадает с собственной частотой колебаний механической системы.
Увеличение напряжений при вибрации учитывают коэффициентом динамичности:
. (8)Здесь σст, σдин– статические и динамические напряжения, вызванные нагрузкой в случае статического ее приложения Рст = Р и изменения во времени, например, по гармоническому закону P = Pcosωt. Особенности расчета на прочность по критерию усталости рассмотрены в многочисленной литературе.
Снижение точности механических систем в условиях вибраций связано с появлением динамической погрешности, обусловленной колебаниями элементов системы.
Исследование динамических погрешностей выполняют с использованием динамических моделей, в которых учитываются инерционные и упруго-диссипативные свойства элементов механизмов. Силы, возбуждающие вибрацию систем, по своей природе могут быть механического, магнитного и аэродинамического происхождения. В соответствии с этим вибрации делят на механические, магнитные и аэродинамические.
Источниками механических вибраций и шума являются неуправляемые вращающиеся или колеблющиеся детали, опоры, зубчатые передачи, токопередающие узлы и другие элементы. Неуравновешенность элементов вызывает колебания с частотами, кратными частоте вращения. Амплитуда вынуждающих сил пропорциональна квадрату частоты и дисбалансу масс вращающихся элементов.Основными причинами колебаний, возбуждаемых опорами и зубчатыми передачами, являются циклические изменения жесткости при движении и допустимые геометрические несовершенства контактирующих и сопрягаемых поверхностей. Колебания токопередающих узлов возникают вследствие ударных и фрикционных взаимодействий, а также неточности изготовления элементов.
Параметры вынуждающих сил зависят от частоты вращения, технологических неточностей изготовления и сборки. Во время переходных процессов разгона, торможения возникают импульсные нагрузки.
Магнитная вибрацияи шум возникают вследствие периодического изменения электромагнитных сил в зазорах электромагнитных систем, обусловленных конструктивными особенностями (зубчатым строением ротора, допустимым отклонением формы и расположения элементов). Параметры вынуждающих сил зависят от параметров магнитной системы, частот стационарного движения, технологических дефектов изготовления и сборки магнитных систем.
Источниками вибрации и шума аэродинамического происхождения являются быстродвижущиеся детали механизмов (например, вентиляторы охлаждения или роторы насосов).
Все виды колебаний взаимодействуют между собой, в результате возникает вибрация в широком диапазоне частот (до десятков кГц) с различными амплитудами. Вибрация как колебательный процесс может быть охарактеризована амплитудой, частотой и фазой виброперемещения, виброскорости или виброускорения.
Для оценки вибрации рассчитывают и измеряют амплитудно-частотный спектр и общий уровень вибраций. Амплитудно-частотный спектр представляет собой зависимости амплитуды вибрации от частоты. Расчет вибрации сводится к определению амплитуд и частот дискретных составляющих спектра. Т.к. дискретные составляющие содержат информацию о характере и значении дефекта, в дальнейшем их используют при решении задач обеспечения заданного уровня вибраций системы и вибродиагностики ее состояния.
Общий уровень вибрации является комплексной характеристикой. Расчет общего уровня вибрации производится по формуле:
, (9)где Ai– амплитуда i-ой дискретной составляющей спектра вибрации.
Итак:
Способность конструкции выполнять свои функции при наличии вибрации в заданном диапазоне частот и ускорений называется виброустойчивостью.
При этом не должно происходить изменений технологических режимов (мощности, фокусирования, частоты, положения луча и т.д.).
В качестве критериев оценки динамического качества несущих систем используют амплитудно-частотные и амплитудно-фазо-частотные характеристики (АЧХ и АЧФХ), которые могут быть рассчитаны и оптимизированы на стадии проектирования. Основой расчета служит математическая модель несущих систем, в которой предварительно анализируется податливость отдельных звеньев, экспериментальные данные о параметрах колебаний.
1. Уменьшение интенсивности источников механических воздействий (путем их балансировки, ха счет уменьшения зазоров, виброизоляция источников механических воздействий). Иногда приходится заменять или исключать узел или агрегат из-за возросшего уровня вибраций.
2. Уменьшение величины передаваемых механических воздействий с помощью виброзащитных устройств (демпферы, виброизоляторы-амортизаторы, динамические виброгасители).
3. Изменение упругих и диссипативных свойств несущей системы (путем увеличения прочности и жесткости).
4. Уменьшение резонансной частоты системы (путем изменения размеров).
Температурные деформации существенно влияют на точность обработки, на способность конструкции сохранять первоначальную настройку и тем самым технологическую надежность. Абсолютная величина линейных температурных деформаций в интенсивно работающем технологическом оборудовании достигает десятков, а иногда и сотен микрометров. Температурные деформации чаще всего носят стохастический характер, по причине нестационарности режимов работы оборудования. Это значительно усложняет их анализ на этапе проектирования. Основным источником тепла в электрофизическом и электрохимическом технологическом оборудовании являются прежде всего сами рабочие органы (лазеры, электронно-лучевые пушки, различные нагреватели и т.д.), а затем двигатели, подвижные соединения работающие при больших скоростях.
1. Уменьшение теплообразования в двигателях и кинематических цепях (в двигателе с увеличением КПД уменьшение трения в направляющих и т.д.).
2. Тепловая изоляция источников тепла от основных базовых деталей направляющей системы. Для этого используют различные тепловые экраны и интенсивный теплоотвод минуя несущую систему.
3. Расположение источников тепла, как правило в верхней части изделия, может существенно уменьшать температурные деформации направляющей системы. Наиболее мощные источник тепла: двигатели, резервуары систем смазки, охлаждения и гидропривода – в прецизионном оборудовании стремятся расположить вне станка, на достаточном удалении от него.
4. Взаимная компенсация тепловых деформаций возможна в ряде случаев за счет их противоположного направления. Для регулирования величины ТД иногда используют специальные сплавы с заданным ТКЛР. Компенсация тепловых деформаций возможна при искусственном подогреве отдельных частей системы, для выравнивания температурного поля.
5. Автоматическая компенсация температурных смещений, которая возможна на основе измерения относительных перемещений наиболее важных узлов оборудования и внесения поправок от специального привода.
1. Донской А.В. и др. Ультразвуковые электротехнологические установки. /А.В.Донской, О.К.Келлер, Г.С.Кратыш. - 2-е изд. перераб и доп. - Л.: Энергоиз-дат 1982
2. Справочник по э/х и э/ф методам обработки. /Г.М.Амишан, И.А.Байсунов, Ю.М.Варон и др. Под общ. ред. В.А.Волосатова. - Л.: Машиностроение 1988
3. Технологические лазеры: Справочник в 2-х т. Т.2. /Г.А.Абильсинтов, В.Г.Гонтарь, А.А.Колпаков и др.; Под общ. ред. Г.А.Абильсинтова. - М.: Машиностроение 2005