где Кг1, Кг2 – нелинейные искажения, вносимые каждым каскадом усилителя.
Нелинейные искажения каждого каскада, прежде всего, определяются величиной усиливаемого сигнала. Поэтому максимальные искажения обычно вносит последний оконечный каскад.
Допустимая величина коэффициента гармоник всецело зависит от назначения усилителя. В усилителях контрольно-измерительной аппаратуры, например, допустимое значение составляет десятые доли процента.
Выходная мощность. Выходная мощность – это полезная мощность, развиваемая усилителем в нагрузочном сопротивлении. При активном характере сопротивления нагрузки выходная мощность усилителя равна
,(3.13)где Uт вых Iт вых – амплитуды выходных гармонических колебаний.
Увеличение выходной мощности усилителя приводят к росту нелинейных искажений, которые возникают за счет нелинейности характеристик усилительных элементов при больших амплитудах сигналов. Поэтому чаще всего усилитель характеризуют максимальной мощностью, которую можно получить на выходе при условии, что искажения не превышают заданной (допустимой) величины. Эта мощность называется номинальной выходной мощностью усилителя.
Коэффициент полезного действия (К.П. Д). Этот показатель особенно важно учитывать для усилителей средней и большой мощности, так как он позволяет оценить их экономичность. Численно К.П.Д. равен
,(3.14)где Р0– мощность, потребляемая усилителем от всех источников питания.
Амплитудная характеристика. Графическая зависимость амплитуды (или действующего значения) выходного напряжения усилителя от амплитуды (или действующего значения) его входного напряжения на некоторой неизменной частоте сигнала получила название амплитудной характеристики (рисунок 3.7).
Амплитудная характеристика реального усилителя не проходит через начало координат: при отсутствии входного напряжения напряжение на выходе не равно нулю. Величина этого напряжения в реальных усилителях напряжение определяется уровнем собственных шумов усилителя и помехами[3]. Основными составляющими шумов усилителя являются: шумы усилительных элементов, тепловые шумы различных цепей усилителя; шумы микрофонного эффекта, вызванные воздействием на узлы и детали усилителя механических толчков и вибраций, фон, обусловленный воздействием на цепи усилителя пульсаций напряжения питания, наводки, определяемые воздействием на цепи усилителя посторонних источников сигналов и источников помех и т.п.
Рисунок 3.7. Амплитудная характеристика усилителя
Шумовые напряжения, в силу своей случайности, имеют самые различные частоты и фазы и поэтому практически охватывают всю полосу частот усилителя. Следовательно, с увеличением полосы пропускания усилителя уровень шума возрастает. Кроме того, шум тем больше, чем выше температура и больше величина сопротивления цепи, которая создает напряжение тепловых шумов. При температуре 20 – 25°С шумовое напряжение, возникающее в резисторе, можно найти по формуле
, (3.15)где частоту и сопротивление выражают в килогерцах и килоомах, а результат в микровольтах.
Все цепи усилителя создают напряжение тепловых шумов, однако особенно большое влияние оказывают собственные шумы первых усилительных каскадов, так как эти шумы в дальнейшем усиливаются всеми последующими каскадами. Если, например, высшая и низшая рабочие частоты усилителя равны 10 000 и 100 Гц, а активное сопротивление входной цепи составляет 500 Ом, то напряжение тепловых шумов будет равно
Уровень шумов транзисторов обычно оценивают коэффициентом шума, выражаемым в децибелах и показывающим, на сколько децибел, транзистор, включенный в цепь, повышает уровень шумов по сравнению с тепловыми шумами цепи.
Приведенные вычисления показывают, что величина напряжения тепловых шумов очень мала. Поэтому помехи от тепловых шумов в усилителях сказываются лишь при больших коэффициентах усиления и при малых величинах сигнала.
Величина общих помех на выходе усилителя должна быть значительно меньше напряжения усиленного сигнала; в противном случае из хаотически изменяющегося напряжения помех нельзя будет выделить полезный сигнал. Обычно считают, что полезный сигнал должен превышать уровень помех не менее чем в 2 – 3 раза (на 6–10 дБ). Этим определяется уровень минимального входного сигнала Uвх мин.
При больших входных напряжениях реальная амплитудная характеристика также отклоняется от линейной (идеальной), искривляясь из-за перегрузки усилительных элементов. (Максимальное напряжение выходного сигнала определяется напряжением питания). Однако отступление передаточной характеристики от линейности приводит к увеличению нелинейных искажений. Поэтому максимальным входным сигналом является сигнал, при котором нелинейные искажения не превысят допустимое (заданное) значение. При таком сигнале усилитель развивает номинальную выходную мощность. Соответствующее выходное напряжение часто называют номинальным выходным напряжением (аналогично и – номинальное входное напряжение, см. дальше).
Таким образом, реальный усилитель может усиливать без заметных искажений напряжения не ниже Uвхмин и не выше Uвх мак. В пределах этого диапазона амплитудная характеристика считается линейной, а угол ее наклона определяет коэффициент усиления.
Отношение амплитуд наиболее сильного и наиболее слабого сигналов на входе усилителя называют динамическим диапазоном амплитуд D. Динамический диапазон обычно выражают в децибелах:
. (3.15)Номинальное входное напряжение (чувствительность). Номинальным входным напряжением называется напряжение, которое нужно подвести к входу усилителя, чтобы получить на выходе заданную мощность. Чем меньше величина входного напряжения, обеспечивающего требуемую выходную мощность, тем выше чувствительность усилителя. Подача на вход усилителя напряжения, превышающего номинальное, приводит к значительным искажениям сигнала и называется перегрузкой со стороны входа. Если усилитель предназначен для работы от нескольких источников, то его вход рассчитывается обычно на наименьшее напряжение, которое дает один из источников, а другие источники сигнала включаются через делители напряжения.
Как было сказано ранее, большинство усилителей состоят из нескольких каскадов (усилительный каскад – часть, образующая одну ступень усиления). Их обобщенная структурная схема была приведена на рисунке 3.2. На ней можно выделить входной, выходной и промежуточные каскалды, которые располагаются между первыми двумя.
Основной задачей входного каскада является согласования электрических характеристик источника входного сигнала и усилителя. Особенности его построения во многом определяются характеристиками источника сигнала. Например, очень часто общие точки («земля») датчиков не имеют электрического соединения с общей точкой («землей») усилителя. В этом случае входной каскад должен строиться по схеме дифференциального усилителя, как это схематически изображено на рисунке 3.2. Большинство первичных датчиков являются маломощными, «хорошо» работающими на нагрузку с большим сопротивлением. В некоторых случаях, датчик построен по схеме «генератора стабильного тока», для которого необходима нагрузка (входное сопротивление водного каскада усилителя) со сравнительно небольшим сопротивлением. Все это должно учитываться при выборе схемы и проектировании входного каскада.
Выходной каскад должен обеспечить подачу в нагрузку заданной мощности сигнала. Поэтому он обычно называется усилителем мощности. При его проектировании несомненно учитываются особенности реальной нагрузки. Например, изолированная (не допускающая заземления) нагрузка может привести к использованию специальных схемотехнических решений. Так как сигнал в выходном усилителе достигает максимальных величин, то при проектировании большое внимание уделяется получению минимальных искажениях его формы.
Все каскады между входным и выходным называются промежуточными или каскадами предварительного усиления. Для уменьшения энергетических потерь (получения большего К.П. Д) оказалось выгодным возложить на них функцию максимального усиления по напряжению. Зачастую сигнал, приходящий на оконечный каскад, имеет напряжение такой же величины, как и в нагрузке. Поэтому основная часть нелинейных искажений, которыми характеризуется усилитель, возникает в оконечном каскаде, что должно учитываться при его проектировании. Количество каскадов предварительного усиления определяется необходимым усилением. Обычно в предварительных каскадах осуществляется необходимая обработка входного сигнала, например, регулировка усиления, фильтрация входного сигнала и т.п.
Очень часто между каскадами предварительного усиления и каскадом усиления мощности включается так называемый предоконечный каскад, задача которого состоит в обеспечении нормального функционирования усилителя мощности. Например, предоконечный каскад в виде фазоинверсного каскада обеспечивает работу двухтактного усилителя мощности. В некоторых случаях его объединяют с усилителем мощности и проводят совместный расчет.