Оберемо підсилювач з таким коефіцієнтом: 20lgk=17,5, k=10(-17,5/20)=7,5 (П1).
Підберемо з ряду опорів Е24 відповідні значення опорів: R1 = 0,6 кОм, R2 = 3 кОм.
Загальна схема корегуючого пристрою має такий вигляд:
3.8 Розрахунок та побудова графіку перехідної характеристики скорегованої САК
Визначимо аналітичний вираз для перехідної характеристики замкнутої скоректованої системи за передаточною функцією розімкнутої САК при одиничному ступінчатому вхідному сигналі та побудуємо графік.
Передатна функція w(s) =
.Передатна функція замкненої системи:
Перехідна характеристика замкненої системи за вхідним сигналом: H(s)=G(s)*Ф(s), де G(s) =
- одиничний ступінчатий вхідний сигнал.H(s)
Графік перехідної характеристики САК зображений на рис. 10.
Рис. 10. Перехідна характеристика САКк
3.9 Для заданого типу вхідної дії розрахунок та побудова графіку усталеної помилки скорегованої САК
Дослідимо точність замкнутої системи за передаточною функцією розімкнутої САК. При дослідженні визначимо три коефіцієнти помилок С0, С1, С2, використовуючи передаточну функцію замкнутої системи за похибкою:
Фx(s) =
Тоді
_
Тобто С0 = 0, С1 = 0,1333, С2 = - 0,00844.
Побудуємо графіки помилок в усталеному режимі при:
- одиничному ступінчатому сигналі G1(t) = 1 (G1(s) = 1/s) (рис. 11).
- помилка від вхідної керуючої дії. - усталена похибка.
Рис. 11. Графік похибки САК
- при сигналі G2(t) = 100t (рис. 12),
- помилка від вхідної керуючої дії. - усталена похибка.
Рис. 12. Графік усталеної похибки САК
3.10 Оцінка якості скорегованої САК
Оцінимо якість перехідних процесів у заданій системі:
- перерегулювання δ – відносне максимальне відхилення перехідної характеристики від усталеного значення вихідної координати, виражене у відсотках:
δ =
(hmax, hуст – відповідно максимальне та усталене значення перехідної характеристики для досліджуваної системи побачимо на графіку (рис.10))
δ =
.- час регулювання (час перехідного процесу) tp – мінімальний час, після сплину якого регульована координата буде залишатися близькою до усталеного значення із заданою точністю
. , тоді tp = 0,6 (с).- число коливань n, яке має перехідна характеристика h(t) за час регулювання tp:
n = 1.
Висновок: приведені вище розрахунки та дослідження показують, що задана система є нестійкою, але її можна скорегувати порівняно нескладними корегуючими пристроями (передаточна функція після корегування має пропорційну, інтегруючу та дві аперіодичні ланки першого порядку), метод розрахунку яких приведений вище; при роботі системи спостерігали усталену похибку САК з заданою вхідною дією, розрахунок провели за допомогою приведених вище формул.
3.11 Моделювання системи в програмному модулі Simulink
Змоделюємо систему в програмному модулі Simulink – зберемо структурну схему отриманої скоректованої системи (рис. 13).
Рис. 13. Модель скоректованої САК в програмному модулі Simulink
1) Реакція системи на одиничний ступінчатий сигнал (рис. 14).
Рис. 14. Реакція системи на одиничний вхідний сигнал
Порівнюючи реакцію САК, отриману за допомогою моделювання (рис. 14), з теоретично отриманою перехідною характеристикою (рис. 10) в пункті 3.8 виявили, що вони співпали (розрахунки в обох випадках проведені правильно).
2) Побудова графіка вихідної координати при заданій вхідній дії
g(t) = 100t (рис. 16).
Змоделюємо систему з заданою вхідною дією в програмному модулі Simulink (рис. 15).
Рис. 15. Модель САК з заданою вхідною дією
Реакція системи на вхідний сигнал (рис. 16).
Рис. 16. Реакція САК на задану вхідну дію
З графіків видно, що робота системи залежить від вхідного сигналу.
4 Аналіз дискретної САК (ДСАК)
В основі аналізу дискретної САК візьмемо лінійну неперервну САК після корекції з передаточною характеристикою w(s) =
.4.1 Визначення періоду дискретизації імпульсного елемента.
В якості формоутворювача сигналу приймемо екстраполятор нульового порядку.
ωз = 43,2 с-1 – максимальна частота в спектрі вхідного сигналу.
За теоремою Котельникова для нормальної роботи системи необхідно, щоб виконувалася умова Tk =
- період дискретизації, ωк ≥ 2ωз – частота дискретизації. Оберемо ωк ≥ 2·43,2 = 86,4 с-1, тодіTk ≤
(с)Виберемо період дискретизації Tk = 0,01с, ωк = 90 с-1.
4.2 Визначення передаточної функції розімкнутої та замкнутої ДСАК відносно вхідної дії
w(z) =
.Спочатку розкладемо функцію на простіші дроби:
.Виконаємо z-перетворення Лапласа отриманої функції:
. Отже,Передатна функція замкненої ДСАК:
.4.3 Визначення стійкості отриманої системи по критерію Гурвіца
Знаючи перехідну функцію, знайдемо характеристичне рівняння системи:D(s)=
.Виконаємо білінійне перетворення
.Отримаємо наступне характеристичне рівняння:
На основі отриманих коефіцієнтів характеристичного рівняння побудуємо головний визначник Гурвіца:
D =
.За критерієм Гурвіца для того, щоб система автоматичного керування була стійкою, необхідно та достатньо, щоб при а0>0 всі визначники Гурвіца були додатними.
а0= 36,2074>0,
Умова стійкості системи виконуються, отже за критерієм Гурвіца САК стійка.
4.4 Побудова логарифмічної псевдочастотної характеристики ДСАК та визначення запасів стійкості
Для побудови логарифмічної псевдочастотної характеристики використаємо передаточну функцію розімкненої системи після корекції та виконання z- перетворення:
Виконаємо
, де l - абсолютна псевдочастота, с-1.Знайдемо нульову контрольну точку: L0 = 20lgk = 20lg1,1683 = 1,351 дБ.
Визначимо спряжені частоти: λ1 =
= 19,9с-1, λ2 = = 49,3с-1,