Смекни!
smekni.com

Основы радиосвязи (стр. 10 из 12)

3.1 Диполь Герца

Электромагнитное поле создается генератором, от которого колебания E(t) и H(t) по фидерному тракту поступают в излучатель антенны – рис. 3.1.


Антенна – это устройство, которое служит для излучения и приема электромагнитных колебаний. Существует огромное количество типов антенн. Все они взаимны, т.е. одновременно могут излучать и принимать. Изучение антенн начнем с самых простых.

Простейшим излучателем является диполь Герца, представляющий собой металлический стержень, в разрыв которого поступают колебания от генератора Iг(t) , а на концах имеются шары.


При периодическом изменении тока генератора в диполе протекает переменный ток плотностью j(t) , а на шарах накапливается переменный заряд q(t). Диполь Герца излучает электромагнитные колебания по следующим причинам:

в соответствии с 1 – м и 3 – м уравнениями Максвелла под действием переменных j(t) и ρ(t) в пространстве около диполя возникают переменные магнитное H(t) и электрическое E(t) поля;

в согласии с 1-м и 2-м уравнениями Максвелла вокруг силовых линий

возникает магнитное поле
, а вокруг силовых линий
возникает поле
; далее процесс повторяется, в результате чего образуется электромагнитная волна, распространяющаяся в пространстве.

Для того, чтобы определить характеристики излучения диполя Герца, решим уравнения Максвелла при следующих допущениях:

плотность тока проводимости вибратора jпр(t) одинакова в любой точке сечения стержня, т.е. ток равномерно распределен по сечению площадью S, отсюда

;

ток генератора изменяется во времени по гармоническому закону


,

где

- амплитуда, ω – циклическая частота колебаний.

Уравнения Максвелла целесообразно решать в сферической системе координат, где координатами являются: r - расстояние от начала координат до точки наблюдения, θ - угол места, φ - азимутальный угол – рис.3.3


Векторы

и
в сферической системе могут быть записаны следующим образом:

;

;

где

,
,
- векторы единичной длины, направленые по касательной к координатным линиям; Er, Eθ, Eφ, Hr, Hθ, Hφ – проекции векторов
и
на направления r, θ, φ.

Координатная линия – это линия пересечения двух координатных поверхностей. Координатные поверхности – поверхности одинаковых значений r, θ, φ. Координатной поверхностью r = const является сфера, θ = const - поверхность конуса, φ = const - плоскость.

Координатная линия r - прямая, образованная пересечениями конической поверхности θ = const и плоскости φ = const , координатная линия θ - окружность, образованная пересечением сферы r = const и плоскости φ = const , линия φ - окружность, образованная пересечением сферы r = const и поверхности косинуса θ = const . На рис. 3.3 показаны направления векторов

,
и
.

При расположении диполя Герца, показанном на рис. 3.3, составляющие поля не зависят от азимутального угла φ . Решение уравнений Максвелла при известной длине диполя l , амплитуде тока генератора Im, параметрах пространства ε и μ, при условии отсутствия потерь энергии имеет следующий вид [1]:

,

,(3.1)

,

где

- волновое сопротивление пространства,

- фазовый множитель.

Как видим, из шести проекций векторов

и
в решении оказалось только три.

3.2 Ближняя и дальняя зоны излучателя

Анализ полученных соотношений для проекций векторов показывает, что характер электромагнитного поля антенны существенно зависит от сомножителя

. Произведение βr можно записать в виде

.

Ближняя зона

В точках пространства, расположенных вблизи излучателя, там, где выполняется соотношение

можно считать, что

. Кроме того, можно еще более упростить выражение для комплексных амплитуд
,
и
, пренебрегая в скобках слагаемыми высших порядков малости. Итак, для
комплексные амплитуды

,

,

.

Мгновенные значения проекций векторов напряженности

и
могут быть записаны в следующем виде:

,

,

,

где

- амплитуда колебаний напряженности магнитного поля.


Расположение проекций векторов

и
в пространстве показано на рис.3.4

Суммарный вектор

перпендикулярен вектору
и колебания
и
сдвинуты во времени на 90o.

Мгновенный вектор Пойнтинга в ближней зоне

Как видим, плотность потока мощности электромагнитного поля в ближней зоне излучателя колеблется около нулевого значения, уходя от антенны и возвращаясь обратно. Среднее во времени значение вектора Пойнтинга

.

Итак, в ближней зоне излучения энергии нет.

Особенности ближней зоны

1.Электромагнитная волна не распространяется в пространстве, а колеблется около антенны, причем амплитуды колебаний напряженностей

и
быстро падают с ростом расстояния r: Hm Em - падает обратно пропорционально r2, а Em – обратно пропорционально r3;

2.Колебания H(t) и E(t) имеет постоянный фазовый сдвиг, равный 90o, в результате чего средняя во времени плотность мощности электромагнитных колебаний равно 0; антенна в ближней зоне эквивалентна реактивному элементу электрической цели (емкости или индуктивности), у которого, как известно, ток и напряжение колеблются в квадратуре.