В Приложении 3 записана связь
и : (1.5)Величина
имеет размерность Ом и называется волновым сопротивлением среды. В вакууме
Ом.Итак, в идеальном диэлектрике при сделанных допущениях решением уравнений Максвелла являются электромагнитные волны, движущиеся вдоль оси z в прямом и обратном направлениях со скоростью v. Прямая волна распространяется от источника электромагнитных колебаний, а обратная возникает при наличии отражений.
1.4 Энергия электромагнитного поля
Если в пространстве существует электромагнитное поле, то в произвольном объеме V имеется энергия
,где
плотность электрической энергии Дж/м3,
плотность магнитной энергии, Дж/м3 .
Поскольку электромагнитное поле существует в виде волн, поле будет перемещаться в пространстве. В частности, энергия будет выходить или входить в объем V. Для оценки энергии электромагнитных волн введена физическая величина, называемая вектором Пойнтинга
и равная векторному произведению векторов и : ,Вт/м2.Величина вектора Пойнтинга
,где α – угол между векторами
и . В идеальном диэлектрике П = EH.Вектор Пойнтинга
перпендикулярен плоскости расположения векторов и и его направление определяется «правилом винта» при вращении к по кратчайшему расстоянию (рис.1)Энергия электромагнитного поля, выходящая из объема V в единицу времени, определяется формулой
,где под интегралом – скалярное произведение векторов
и , а интеграл берется по замкнутой поверхности S, ограничивающий объем V.В случае, если диэлектрик в объеме V - неидеальный (
), то возникают токи проводимости плотностью и, в соответствии с законом Джоуля – Ленца, часть энергии электромагнитного поля преобразуется во внутреннюю (тепловую) энергию диэлектрика.Закон сохранения энергии определяется теоремой Пойнтинга:
-
где в левой части – скорость убывания энергии поля в объеме V, Pпот - количество теплоты, выделяющейся в 1 с в диэлектрике за счет протекания токов, т.е. мощность потерь, причем
,где скалярное произведение
- это плотность мощности потерь, т.е. количество теплоты, выделяемой в единицу времени.В соответствии с теоремой Пойнтинга, изменение энергии электромагнитного поля в объему V происходит по 2-м причинам. Во - первых, за счет движения энергии в пространстве, во – вторых, за счет нагревания диэлектрика при протекании токов проводимости.
1.5 Монохроматические волны в идеальном пространстве
Радиосигнал представляет собой сложную зависимость величин E и H от времени, спектр сигнал содержит множество частот. Если сигнал узкополосный, то его спектр сосредоточен вблиз
и несущей частоты и можно, в первом приближении, полагать, что колебания E(t) и H(t) имеют гармоническую форму, т.е. спектр содержит только одну частоту f, Гц (или циклическую частоту , рад/с).Электромагнитные волны, в которых спектр колебаний содержит одну частоту, называют монохроматическими. Введение понятия монохроматических волн существенно упрощает анализ.
Предположим, что колебания распространяются вдоль одной оси z, т.е. E(t,z) и H(t,z) - функции 2-х переменных: t и z. В некоторой точке пространства z = 0 имеется источник электромагнитного поля
,где Em - амплитуда колебаний.
Аналогично изменяется во времени и H(t,0). Считаем, что источник колебаний создает поле, которое не меняется по координатам x и y. В точке
напряженность электрического поля ,где v- скорость распространения волны, или
(1.7)Постоянная
(1.8)называется фазовым множителем. Если учесть, что
, а длина волны ,то
и имеет другое название – волновой множитель, или волновое число.
Мгновенная фаза колебаний
(1.10)- функция времени и координаты. Если объединить в пространстве все точки, в которых колебания синфазны, т.е.
, то получим поверхность равных фаз. На этой поверхности в данный момент времени значения E одинаковы. Поверхность равных фаз называется волновой поверхностью. В рассматриваемом случае волновая поверхность является плоскостью, простирающейся в пространстве бесконечно вдоль координат y и x.Вдоль координаты z плоскость движется со скоростью
,называемой фазовой скоростью. Из (1.10) следует что
и фазовая скорость
,т.е. совпадает со скоростью v, определяемой (1.3).
Итак, если источник поля создает гармонические колебания в плоскости z = 0, то в идеальном диэлектрике возникает плоская монохроматическая волна, у которой векторы
и изменяются по закону , (1. 11,а) (1.11,б)и сдвинуты в пространстве на угол 900, фазовая скорость волны равна
,а связь амплитуд напряженностей электрического и магнитного полей подчиняются формуле (1.5). Запишем, в каком соотношении находятся энергии электрического и магнитного полей в плоской волне.
Плотность энергии электрического поля
и учитывая (1.5), получим
Таким образом, энергия плоской волны состоит из равных долей энергии электрического и магнитного полей.
1.6 Поляризация радиоволн
Электромагнитные волны бывают поляризованными и неполяризованными. Волны называются поляризованными, если направления векторов
и в пространстве могут быть определены в любой момент времени. Если же направления и изменяются во времени случайным образом, то волна называется неполяризованной. Для радиосвязи естественно использовать поляризованные волны, что даёт возможность эффективного приёма радиосигналов при известном законе изменения и в пространстве.