Смекни!
smekni.com

Основы радиосвязи (стр. 7 из 12)

Если в линии распространяется ТЕМ-волна, то фазовая скорость равна скорости света в среде v. Поскольку

,

,


скорость света в вакууме, то

,

где

,
- относительные диэлектрическая и магнитная проницаемости диэлектрика, заполняющего линию, и длина волны в линии

,

где

- длина волны в вакууме.

В случае распространения волн Em и Hm - типа

(2.14)

Из соотношений (2.13) и (2.14) следует, что

уменьшается при заполнении линии диэлектриком или магнитным материалом, и увеличивается при возбуждении поперечно – магнитных и поперечно – электрических волн.

2.6 Затухающие электромагнитные поля

Если к линии подключен источник, генерирующий колебания, частота которых меньше критической, определяемой формулой (2.6), то система уравнений (2.1) имеет следующее решение (см. приложение 5):

(2.15)

где

- зависящие от х амплитуды колебаний напряженностей поля в точке z=0

- действительное число,

Из (2.15) видно, что амплитуда колебаний, возбуждаемых в линии в точке z=0, уменьшается с ростом z, причем быстрота затухания тем больше, чем сильнее отличаются f от fкр. При любых z колебания синфазны, т.е. отсутствует движение волны.

Как следует из (2.15) колебания H(t) и E(t) происходят с фазовым сдвигом, равным 90

, поэтому средний во времени вектор Пойнтинга равен 0, т.е. электромагнитное поле не переносит энергии.

2.7 Радиоволны в прямоугольном волноводе

Прямоугольный волновод (рис.2.5) - широко используемая линия передачи, обладающая наименьшими потерями энергии, по сравнению с другими типами линий.

Поперечным сечением волновода является прямоугольник, широкая сторона которого равна а, узкая-b.

Для нахождения электромагнитного поля внутри волновода следует решить уравнения Максвелла с граничными условиями

где

- касательная составляющая напряженности электрического поля. Проведя преобразования, аналогичные тем, которые были проделаны при нахождении поля между параллельными плоскостями, найдем выражения для составляющих поля в волноводе. Здесь также имеются две группы полей:

- поперечно-электрические или ТЕ-типа (Н-тип),

- поперечно-магнитные или ТМ-типа (Е-тип).

Поле Н-типа имеют составляющие Ех, Еу, Нх, Ну, Нz, а поле Е-типа – Ех, Еу, Еz, Нх, Ну.

Радиоволны Н-типа

Поперечно-электрические поля имеют следующие составляющие:

(2.16)

(2.17)

Как видим, поле имеет вид бегущей волны при

, где

(2.18)

В волноводе может распространяться бесконечное число волн Hmn, соответствующих разным значениям m и n. Для того чтобы расширить диапазон пропускаемых частот, следует, по возможности, уменьшить критическую частоту

. С этой целью следует возбуждать волны, у которых m и n минимальны.

Как следует из выражений для составляющих поля, не существует волны Н00. Простейшими типами колебаний являются Н10 и Н01. Так как a>b, то из (2.18) следует, что наименьшая критическая частота у волн Н10. Именно она, главным образом, используется на практике.

Волна Н10

Подставим в (2.16) m=1, n=0, получим

где

-постоянная распространения волн Н10, определяемая выражением (2.16), а критическая частота

Поскольку

,

где

-критическая длина волны в диэлектрике, заполняющем волновод, то

.

Длина волны в волноводе определяется соотношением (2.14), справедливым для волн Н- и Е-типа.

На рис.2.6 приведено распределение линий напряженности Е и Н в случае возбуждения волн Н10.

2.8 Волны ТЕМ-типа


Как было отмечено в разделе 2.3, поперечные электромагнитные поля (ТЕМ-типа) существуют в линии при любых частотах колебаний, в том числе при
, т.е. при протекании постоянного тока. Поэтому ТЕМ-волны могут распространяться в тех линиях, которые пропускают постоянный ток. Среди представленных на рис.2.1 это - двухпроводные, коаксиальные и микрополосковые линии.

На рис.2.7 изображены распределения электрических и магнитных линий в линиях с ТЕМ-волнами, справедливые для некоторого момента времени.

Помимо главной особенности таких ТЕМ-волн - отсутствие граничной частоты, эти волны имеют следующие свойства.

Фазовая скорость не зависит от частоты колебаний и равна скорости света в среде

где с- скорость света в вакууме. Для немагнитных сред (где

)

(2.19)

В микрополосковой линии среда неоднородна по сечению, поэтому в (2.19) нужно подставить некоторую эффективную относительную диэлектрическую проницаемость

, которая заключена в пределах
,где
- относительная диэлектрическая проницаемость подложки. Значение
для микрополосковых линий можно найти, например в работе
.

Длина волны в линии не зависит от частоты колебаний f:

где

- длина волны в вакууме. Для линий с немагнитным заполнением

(2.20)

Поскольку структура поля в линии такая же. как и при протекании постоянного тока, а статическое электрическое поле потенциально, то и для переменных полей можно использовать понятие потенциала

. Это дает возможность перехода при расчете поля от дифференциальной векторной величины
к интегральной скалярной величине
, где U – разность потенциалов, или напряжение. В результате, вместо расчёта трех проекций вектора
, зависящих от 4-х переменных, достаточно найти одну величину U как функцию 2-х переменных. Это значительно упрощает расчёт.

Вектор плотности тока

в линиях с ТЕМ-волной имеет составляющую, направленную вдоль оси распространения (оси х). Поэтому, вместо дифференциальной векторной величины ,
можно перейти к интегральной скалярной величине – току I(t,x).

2.9 Телеграфные уравнения

Получим соотношение между напряжением U и током I в линии передачи с ТЕМ-волной, которые позволят анализировать распространение электромагнитной волны в линии, не решая уравнения Максвелла. С этой целью рассмотрим небольшой отрезок коаксиальной линии длинной

(рис.2.8).