Смекни!
smekni.com

Основы радиосвязи (стр. 9 из 12)

Получим выражение для средней мощности колебаний в линии. С этой целью подставим в (2.31) выражения (2.32) и (2.33), в результате имеем Рср=0. Итак, в режиме стоячих волн энергия вдоль линии не передается. Таким образом, режим стоячих волн для передачи радиоволн не пригоден. Этот режим применяют в резонаторах. Режим смешанных волн.

На практике в линии всегда присутствует отраженная волна, причем амплитуда отраженной волны Uотр меньше амплитуды падающей Uпад. Допустим, что Uотр =

, т.е. фаза напряжения отраженной волны φотр=0. Комплексная амплитуда напряжения в линии

.

Распределение амплитуды напряжений вдоль линии показано на рис.2.11.

В некоторых сечениях линии (пучностях) имеется усиливающая интерференция, падающая и отраженные волны складываются в фазе и амплитуда колебаний напряжения максимальна

. В других сечениях (узлах) - гасящая интерференция, волны складываются в противофазе. Здесь амплитуда напряжений минимальна
.

2.12 Коэффициент стоячей волны напряжения

Коэффициент отражения.

Для характеристики режима работы линии используют коэффициент стоячей волны напряжения

, который определяется так

(2.34)

Поскольку

,
, то

(2.35)

Коэффициент отражения.

Другим коэффициентом, применяемым для оценки режима работы линии, является коэффициент отражения напряжения от нагрузки

:

Так как при

x=

(2.36)

где

- модуль коэффициента отражения;

- фаза коэффициента отражения.

Связь kсв c Г.

Из (2.35) и (2.36) следует, что

.(2.37)

Отсюда

Из (2.36) следует, что модуль коэффициента отражения может находиться в пределах

0<Г<1,

а согласно (2.37), пределы изменения коэффициента стоячей волны


2.13 Передача энергии в нагрузку

В режиме смешанных волн мощность электромагнитных колебаний, поступающая в нагрузку

где

- мощность колебаний, создаваемых падающей волной;
- мощность колебаний отраженной волны, причем

где

- проводимость нагрузки.

Отсюда

,

или

(2.38)

Таким образом, мощность электромагнитных колебаний, передаваемых по линии от источника к нагрузке, в значительной мере зависит от модуля коэффициента отражения Г.

Максимальная мощность, передаваемая в нагрузку.

В любой линии передачи существует максимально допустимая амплитуда колебаний

. Допустим, что в предельном случае выполняется условие
где

максимальная амплитуда колебаний в линии, т.е амплитуда в пучностях.

В этом случае

и мощность колебаний падающей волны

Подставив это выражение в (2.38), получим с учетом (2.37)

(2.39)

Из (2.39) следует, что при заданной амплитуде

для максимальной передачи мощности в нагрузку следует уменьшать
, т.е. стремится к установлению режима бегущих волн.

2.17 Условия существования режима бегущих волн

Как было отмечено в разделе 2.13, для наиболее эффективной передачи энергии электромагнитных колебаний по линии от источника к нагрузке следует устанавливать режим бегущих волн. Получим условие его существования.

В конце линии при

сопротивление нагрузки

где

Учитывая (2.27) и (2.28), запишем

или, поделив числитель и знаменатель на

и принимая во внимание выражение (2.36), получим

отсюда

(2.40)

В режиме бегущих волн коэффициент отражения напряжения

. Таким образом, получаем следующие условия для существования режима бегущих волн:
(2.41) или
где
- волновое сопротивление линии,

Для того, чтобы в линии передачи существовал режим бегущих волн, требуется, чтобы нагрузка была чисто активная и сопротивление нагрузки равнялось волновому сопротивлению линии.

Волновое сопротивление зависит от погонных параметров линии

, которые определяются размерами линии и её заполнением. В большинстве радиотехнических устройств применяются коаксиальные и микрополосковые линии со стандартным волновым сопротивлением
Ом или
Ом. Такие значения сначала были выбраны для коаксиальных линий из условия минимума потерь в линии и максимума передаваемой мощности (см. Приложение 6). Поскольку в микроэлектронных радиосистемах коаксиальные линии сопрягаются с микрополосковыми, такой же стандарт был выбран и для микрополосковых линий.

В заключение отметим, при таком условии амплитуды колебаний напряжения и тока не зависят от того, в каком сечении в линии они определены. Изменения амплитуд объясняется сложением колебаний, распространяющихся вдоль оси Х и обратно, мгновенная фаза которых зависит от координаты. Из-за этой зависимости возникают пучности, где разница фаз падающей и отраженной волн равна 0 и узлы, где разность фаз составляет

радиан. Для того, чтобы устранить эту зависимость, нужно выполнить условие или

где

-длина волны в линии.

Таким образом, линии передачи и любые электронные каскады радиосистем, размеры которых значительно меньше длины волны, можем считать устройствами с сосредоточенными параметрами. Зависимость физических величин и параметров от координат в них не проявляется.


3. Излучение и распространение радиоволн

Электромагнитные волны излучаются в пространстве передающими антеннами, на которые поступают колебания по фидеру от источника. В антеннах происходит преобразования типа колебаний, существующего в фидере, в ТЕМ – волны, распространяющиеся в свободном пространстве.