Смекни!
smekni.com

Основы теории цепей (стр. 2 из 2)

3. Алгебра комплексных чисел

Комплексным числом называют пару чисел, изображающих вектор на комплексной плоскости. Будем изображать комплексное число заглавной буквой с чертой внизу (

). Вводится мнимая единица:

Комплексное число может быть представлено в разных формах:

– показательная форма:

- это вектор на комплексной плоскости, где
- длина (модуль) вектора,
- аргумент или фаза. Фазу всегда отсчитывают против часовой стрелки от положительного направления вещественной оси;

– алгебраическая форма:

– это точка на комплексной плоскости, где
- координаты по вещественной и мнимой осям, причем:

,
,

, если
,

=

, если
<
.

Переход от одной формы записи комплексного числа к другой:

.

Складывать комплексные числа предпочтительно в алгебраической форме либо геометрически по правилу параллелограмма:

Вычитать комплексные числа удобно в алгебраической форме либо геометрически по правилу параллелограмма (вектор разности направлен из конца вычитаемого в конец уменьшаемого):

Умножать и делить комплексные числа удобнее в показательной форме:

;
.

Комплексные числа, не зависящие от времени, обозначают заглавными буквами с чертой внизу:

, а комплексно сопряженные им числа обозначают еще и звездочкой сверху
: это числа, у которых та же вещественная часть, а мнимая с обратным знаком.

Комплексные числа, которые являются функциями времени, обозначают заглавными буквами с точкой сверху:

, а комплексно сопряженные им числа обозначают заглавными буквами со звездочкой сверху
: это числа, у которых тот же модуль, но фаза с обратным знаком.

Так как

, то умножить комплексное число на j это значит, не изменяя его модуля, увеличить фазу на 900 или повернуть соответствующий вектор на 900 против часовой стрелки. Разделить на j - наоборот:

.

4. Символический метод

Пусть есть комплексное число с линейно изменяющимся во времени аргументом:

. На комплексной плоскости это число представляет неизменный по длине вектор, вращающийся против часовой стрелки с постоянной скоростью w.

Любую синусоидальную функцию времени можно представить в виде проекции на вещественную или мнимую ось соответствующего вращающегося вектора.

Проекция вектора на мнимую ось дает синусоидально изменяющуюся функцию времени:


Вводят специальное обозначение (символы):

- комплекс амплитудного значения тока или

- комплекс амплитудного значения напряжения. Они содержат информацию об амплитуде и начальной фазе синусоидального колебания.

Комплекс амплитудного значения деленный на

, дает комплекс действующего значения:

и
.

Комплекс амплитудного или комплекс действующего значения позволяют перейти к мгновенному значению, например:

;

.

5. Законы цепей в символической форме

1. Первый закон Кирхгофа

Алгебраическая сумма мгновенных значений токов ветвей, сходящихся в одном узле, равна нулю.

.

Подставим вместо каждого мгновенного значения тока его представление в виде комплекса амплитудного значения, тогда

.

Так как в любой момент времени нулю равна сумма проекций вращающихся векторов, следовательно, нулю должна равняться сумма самих вращающихся векторов, т.е. получим

. Так как
, то сократим на нее и получим
.

Алгебраическая сумма комплексов амплитудных значений токов ветвей, сходящихся в одном узле, равна нулю.

Поделив на

, получим первый закон Кирхгофа для комплексов действующих значений.

2. Второй закон Кирхгофа

После аналогичных преобразований получим:

или
.

Алгебраическая сумма комплексов амплитудных (действующих) значений напряжений на всех элементах контура, кроме ЭДС равна алгебраической сумме комплексов амплитудных (действующих) значений ЭДС этого же контура.

Однако для самих амплитудных и действующих значений законы Кирхгофа не выполняются.

Список литературы

1. Основы теории цепей. Учебник для вузов./ Г.В. Зевеке, П.А. Ионкин, А.В. Нетушил, С.В. Страхов.-5-е изд. перераб.-М.: Энергоатомиздат, 1989. 528 с.

2. Теория электрических цепей: Методические указания к лабораторным работам / Рязан. гос. радиотехн. акад.; Сост.: С.М. Милюков, В.П. Рынин; Под ред. В.П. Рынина. Рязань, 2002. 16 с.,2004. 20 с. (№3282, №3624)

3. Основы теории цепей: Методические указания к курсовой работе / Рязан. гос. радиотехн. акад.; Сост.: В.Н. Зуб, С.М. Милюков. Рязань, 2005. 16 с.

4. Теоретические основы электротехники. / Г.И. Атабеков, С.Д. Купалян, А.В. Тимофеев, С.С. Хухриков.-М.: Энергия, 1979. 424 с.

5. М.Р. Шебес. Теория линейных электрических цепей в упражнениях и задачах. М.: Высшая школа, 1990. 528 с.