Смекни!
smekni.com

Основы фотолитографического процесса (стр. 3 из 3)

Несмотря на такие высокие характеристики помещений, большинство фотолитографических операций проводятся в герметичных скафандрах. Скафандры выполняются из нержавеющей полированной стали и оргстекла. Внутренние углы скафандра должны быть закругленными, чтобы не накапливалась пыль. В наиболее совершенных скафандрах предусмотрено электростатическое удаление пыли. На рис. 3-11 изображена типовая схема производственного участка фотолитографии. Все операции можно разделить на индивидуальные и массовые. К первой группе относятся, безусловно, операции экспонирования и совмещения, в меньшей мере — операция нанесения. Иногда и проявление проводится индивидуальным порядком, например, если применяется вращение пластин или проявителя. Массовые операции — обработка подложек, сушка резиста, травление, удаление резиста.

Производительность фотолитографического участка определяется в первую очередь индивидуальными операциями. Поэтому практически хорошо зарекомендовала себя схема производственного участка с дублируемыми установками нанесения и совмещения. При дублировании возрастает не только производительность, но и надежность работы участка. Для увеличения производительности созданы многошпиндельные центрифуги — для нанесения резиста на три — пять пластин одновременно с регулируемым независимо числом оборотов до 16000 об/мин, а также многопозиционные установки совмещения карусельного типа. Увеличение производительности и переход на полуавтоматическое нанесение резиста обеспечивается применением метода распыления.

Наиболее сложное и прецизионное оборудование требуется на операциях экспонирования и совмещения. Установка экспонирования и совмещения состоит из основных узлов: оптической системы (микроскопа), механизма совмещения и источника ультрафиолетового излучения. На первых стадиях разработки установок совмещения самым трудным представлялось выполнение механизма точных перемещений. В настоящее время положение несколько изменилось: точность совмещения лимитируют микроскопы, от которых требуется переменное увеличение, большие поля зрения и рабочие расстояния, высокая разрешающая способность. В современных установках используются бинокулярные микроскопы с двумя объективами, расстояние между которыми можно менять в пределах от 12 до 25 мм. Увеличение самого микроскопа изменяется от 19-кратного— для грубой наводки при предварительном совмещении, до 1100-кратного — для контроля перемещений порядка долей микрона (±0,25 мкм). Разрешающая способность—не ниже 400 линий на 1 мм; в лучших моделях до 2 000 линий на 1 мм. В установке совмещения требуется большое рабочее расстояние микроскопа. Обычно эта величина составляет 10—35 мм при 100-кратном увеличении.

Механизмы совмещения обычно выполняются трех типов: пантографы, винтовые и кулачковые. Трудно отдать предпочтение какому-либо из них; пантограф, например, удобен тем, что позволяет легче менять передаточное отношение в широких пределах от 30:1 до 100:1; кулачковый механизм удобен в работе и более надежен. Наибольшую точность—до ±0,25 мкм —обеспечивает в настоящее время винтовой механизм, состоящий из двух взаимно перпендикулярных микрометрических подач. Крепление пластины обычно вакуумное, шаблона чаще всего— механическое. Между шаблоном и пластиной при совмещении создается зазор, точно регулируемый в широких пределах (от 0 до 127 мкм). Это позволяет работать с пластинами разной толщины — от 50 мкм до 750 мкм. В некоторых установках регулировка зазора осуществляется автоматически. Иногда для ускорения рабочего цикла применяют предварительное совмещение в отдельной рамке или автоматизируют загрузку и выгрузку пластин. Столик, на котором крепится пластина, самоустанавливающийся, на воздушной подушке. К источнику ультрафиолетового излучения предъявляются такие требования как строгая перпендикулярность светового пучка к пластине, равномерность облученности по полю диаметром 40—60 мм, иногда выделение с помощью фильтров излучения более узкого спектрального диапазона.

Хорошо приспособлены к автоматизация массовые процессы — проявление, промывка, сушка. В последнее время созданы автоматические установки проявления, промывки и сушки, рассчитанные на одновременную обработку 10 и более пластин с фоторезистом. Экспонированные пластины укладываются оператором рабочей поверхностью вверх в дискообразный держатель. После того как оператор загрузил держатель с пластинами в установку, он включает пусковую кнопку, и дальнейшие операции выполняются автоматически. Установка позволяет изменять число и последовательность циклов обработки: проявление — проявление — промывка; промывка — проявление — промывка; проявление—промывка—промывка. В последнем варианте для промывок могут быть использованы два различных состава, например, ацетон и затем спирт. Установка может быть дополнительно оборудована для проведения общим счетом восьми химических циклов. Важно отметить, что любой из перечисленных выше циклов можно выключить из последовательности, а также прервать в требуемый момент времени для визуального контроля пластин. Прерванный цикл продолжается далее автоматически с той же точностью соблюдения времени обработки, поскольку в электронных реле предусмотрена оперативная память.

Заключение

Фотолитография занимает центральное место в современной технологии изготовления изделий микроэлектроники. Именно она чаше всего определяет возможность получения того или иного полупроводникового прибора, особенно в том случае, когда размеры элементов топологии прибора, а также толщины его активных слоев близки к критическим, т.е. предельным для современного уровня развития фотолитографии. Можно сказать, что именно успешное развитие фотолитографии было своеобразным «локомотивом», движение которого определяло темпы развития микроэлектроники. Фотолитография обеспечила соблюдение знаменитого закона Гордона Е. Мора, согласно которому плотность компоновки элементов в изделиях микроэлектроники удваивается каждые 18 месяцев.

Успехи фотолитографии во многом определяются культурой фотолитографического производства и продуманностью конструктивных особенностей оборудования, но в большей степени — качеством используемых. Фоторезисты являются материалами, которые должны удовлетворять набору противоречивых требований, а именно обладать высокой чувствительностью к действию актиничного излучения, высокой стойкостью к плазмохимическому травлению, малой дефектностью, высокой контрастностью, низкой чувствительностью к изменению параметров фотолитографического процесса и т.п..

Для успешной разработки фоторезистов и грамотного их использования необходимо глубокое понимание физико-химических механизмов формирования резистных масок в слое резиста.

Все поставленные в самом начале цели достигнуты.

Список использованных источников

1. Черняев В.Н. Технология производства интегральных микросхем и микропроцессоров. Учебник для ВУЗов — М; Радио и связь, 2007 - 464 с: ил.

2. Технология СБИС. В 2 кн. Пер. с англ./Под ред. С. Зи, — М.: Мир, 2006.-786 с.

3. Готра З.Ю. Технология микроэлектронных устройств. Справочник. — М.: Радио и связь, 2001.-528 с.

4. Достанко А.П., Баранов В.В., Шаталов В.В. Пленочные токопроводящие системы СБИС. — Мн.: Выш. шк., 2000.-238 с.