Хотя были найдены другие кристаллы основного материала которые по некоторым свойствам превосходят материал YAG. мо лишь немногие из них имеют такую совокупность преимуществ, как YAG.
Nd: YAG - лазер является лазером с четырьмя уровнями .
На рис. 9 показано расположение, энергетических уровней и лазерный переход.
Рис. 9. Расположение энергетических уровней и лазерный переход.
Сначала ионы Nd3+находятся на основном уровне. Вследствие поглощения света ламп накачки они возбуждаются в состояние полос возбуждения 2. Вследствие быстрых безизлучтельных переходов населяется верхний метастабильный (долгоживущий) лазерный уровень 3. Таким образом, возникает инверсия населенности на переходе 3-4, дающая возможность лазерной генерации на длине волны 10064 мкм в ближней ИК области спектра.
Накачка для активного лазерного перехода может быть выполнена лампами дугового разряда с инертным газом (например, криптон или ксенон), поскольку их полосы испускания 0,5-0,9 мкм довольно хорошо совпадают с уровнями накачки. Устройство накачки может состоять из двойного эллиптического отражателя с золотым напылением, что обеспечивает высокий коэффициент отражения. Цилиндрический стержень из материала YAG располагается в общем фокусе, а лампы дугового разряда - в двух других фокусах.
Рис. 10. Устройство накачки с эллиптическим отражателем.
Лазер на ионах аргона и криптона
Аргоновый лазер является примером ионного лазера, в котором активной средой служит инертный газ. Газ содержится под давлением около 0,5 мбар в плазменной трубке с внутренним диаметром около 3 мм. Принципиальная схема газового ионного лазера показана на рис.11.
Рис. 11. Принципиальная схема газового ионного лазера.
Лазерные трубки должны иметь хорошую теплопроводность и прочность по отношению к ударному воздействию ионов. Наряду с кварцем применяются такие материалы как графит или окись бериллия. Магнитные катушки, расположенные вокруг разрядной трубки концентрируют плазму в центре трубки.
Благодаря этому уменьшается ударная нагрузка трубки и одновременно повышается эффективность лазерного процесса. Так как разряд происходит в узкой разрядной трубке по типу ионного насоса, то ионы аргона концентрируются перед анодом и отсутствуют в катодном пространстве, что препятствует повторному возбуждению.
Рис. 12. Устройство газового ионного лазера в деталях:
1) зеркало резонатора; 2) газоразрядная трубка; 3) окно Брюстера; 4) канал разряда; 5) канал обратного потока; 6) катод; 7) анод; 8) источник тока для разряда; 9) катушка магнита; 10) источник тока для магнитного поля; 11) шайбы из графита или окиси беррилия; 12) вода для охлаждения.
Для обеспечения непрерывной работы лазера кроме разрядного канала необходим канал обратного потока, по которому газ может возвращаться к катоду. Для селекции длины волны в резонатор можно поместить эталон или дисперсионную призму.
ЛИТЕРАТУРА
1. Белова А.Н. Нейрореабилитация .-М. Антидор, 2000 г. – 568с.
2. Прикладная лазерная медицина. Под ред. Х.П. Берлиена, Г.И. Мюллера.- М.: Интерэкспорт, 2007г.
3. Александровский А.А. Компьютеризованная кардиология. Саранск; "Красный Октябрь" 2005: 197.
4. Разработка и постановка медицинских изделий на производство. Государственный стандарт Республики БеларусьСТБ 1019-2000.
5. Штарк М.Б., Скок А.Б. Применение электроэнцефалографического биоуправления в клинической практике. М. - 2004 г
6. Боголюбов В.М., Пономаренко Г.Н. Общая физиотерапия. М.,СПб.: СЛП, 2008.