Смекни!
smekni.com

Блок управления и контроля автоматизированного тестера параметров радиоэлементов (стр. 2 из 8)



Рисунок 2.1 - Графическое представление ФММР

В общем случае процессы в формальном многополюснике (ФМП) можно представить нелинейными дифференциальными уравнениями вида



(2.1)

(2.2)

(2.3)


где I, U - вектор–функции определяемые токами и напряжениями

на полюсах;

Fi и fp – некоторые функции, в общем случае нелинейные;

Х - вектор-функция времени с составляющими х12,…хq , которые

связаны с различными физическими величинами в зависимости от

принципов построения модели.

2.2 Структура ФММР

Кроме множества N полюсов, структуру ФММР представляют под множество А полюсов для электропитания по переменному току в процессе преобразования сигналов и под множество S полюсов для электропитания МП по постоянному току для создания рабочего режима.

Связь между множествами A, S и N определяет выражение

А £ N, S £ N. (2.4)

Пусть а- размер А, а bi – его элемент при i=1,a , s-размер S, Сj- его элемент при j=1,s.

В случае ФМП множество полюсов N представляет собой объединение полюсов A и S, т.е.

N=AUS. (2.5)

При этом возможны следующие отношения между A, S и N.

Для пассивных устройств

S=0, A=N. (2.6)

Для устройств постоянного тока, для которых мгновенными измерениями сигналов во времени можно пренебречь

A=0, S=N. (2.7)

Подмножества A и S совпадают (например для транзистора)

A=S=N. (2.8)

Для устройств типа операционного усилителя

AÌS=N. (2.9)

Полюса А и S изолированы друг от друга (некоторые интегральные схемы)

AÌS, N=A+S. (2.10)

Условия (2.6)-(2.10) необходимо учитывать как при конкретном применении МП, так и при организации процесса измерения его параметров.

2.3 Базовый узел ФММР

В качестве базового узла ФММР можно выбрать любой из его полюсов и даже объединить несколько полюсов. В этом случае порядок МП понизится на число полюсов принятых в качестве базовых, и его модель принципиально упростится.

С другой стороны базовый узел может быть внешним по отношению к МП, т.е. электрически с МП не связан. В этом случае первый закон Кирхгофа для мгновенных токов, втекающих в N-полюсник, может быть записан в виде



А линейные устройства будут иметь особенные матрицы параметров, т.е. сумма элементов этих матриц по строкам и столбцам будет равна 0.

В этой связи для описания ФММР достаточно идентифицировать N-1 строк и столбцов.

2.4 Структура элементной базы

Структура элементной базы РЭА приведена на рисунке 2.2.

Согласно рисунку 2.2 элементная база (ЭБ) подразделяется на двухполюсники (ДП) и многополюсники (МП). Считаем необходимым выделить ДП в отдельное подмножество в виду их исключительного значения в качестве компонент, на основе которых конструируется более сложные по структуре и назначению компоненты, в том числе и МП. ДП и МП в свою очередь подразделяются на пассивные (ПЭ) и активные (АЭ) элементы. АЭ отличаются от ПЭ тем, что режим их функционирования обязательно определяют дополнительные факторы, например, токи напряжения смещения рабочей точки. Подклассами П и А являются элементы: дискретные элементы (Д)- элементы со сосредоточенными постоянными параметрами, относительно простой конструкции и принципа действия (резисторы, конденсаторы, транзисторы и т.п. ); с распределенными параметрами (РП); акустоэлектронные элементы (АЭ); функциональные элементы (ФЭ); интегральные схемы (ИС); цифровые элементы (ЦЭ). По существу, подклассы элементов, определяющих структуру АЭ и ПЭ, совпадают за исключением ЦЭ, которые являются особым подклассом активных элементов, элементарных логических ИС до сложнейших микропроцессорных устройств.


Рисунок 2.2 - Структура элементной базы РЭА.

2.5 Модели РЭ для САПР электронных схем

2.5.1 Встроенные модели

В современных САПР электронных схем, например, PSpice широко используются встроенные модели. В системе PSpice в состав этих моделей входят модели диода, биполярного транзистора, канального полевого транзистора, МОП-транзистора и магнитного сердечника. Указанные модели позволяют рассчитывать статические линейные и нелинейные динамические режимы. В основу моделей диодов и транзисторов положены идеи выдвинутые Эберсом и Моллом. В этих моделях отражены достижения последних десятилетий.

К достоинствам встроенных моделей можно отнести:

− элементы, указанные выше, можно аттестовать по справочным данным;

− в зависимости от решаемой задачи можно определить уровень сложности моделей, тем самым оптимизируя процесс вычисления;

− для МОП транзистора предлагается 4 уровня сложности, а для биполярного транзистора 3, кроме моделей Гуммеля-Пунна аттестуемой 59 параметрами и константами.

Также предусмотрены усеченное использование моделей Эберса-Молла на основе 16-20 параметров, предоставление пользователю корректировки встроенных моделей.

К недостаткам встроенных моделей, приведенных в литературе /2/ следует отнести их сложность. Анализ показывает, что для расчета малосигнальной модели биполярного транзистора требуется использовать практически весь математический аппарат нелинейного варианта его модели.

Также к недостаткам следует отнести ограниченный частотный диапазон. По данным /2/ частотный диапазон биполярного транзистора ограничен 100 МГц. Отсутствие достаточного объема справочной информации и связанной с этим необходимость организации сбора дополнительной информации, путем реализации дополнительных измерительных процессов.

2.5.2 Макромодели

В САПР высокого уровня (например, PSpice) предусмотрено использование макромоделей ряда элементов (операционные усилители, компараторы напряжения, СВЧ транзисторы, нелинейные резисторы, конденсаторы и т.п.) идентификация параметров которых производится пользователем. Успех моделирования в этом случае определяют методы и условия измерения. Пользователю предоставляется возможность идентификации параметров модели в условиях, наиболее приближенному к реальному использованию. Так встроенные модели в библиотеке PSpice адекватны на частотах только до 100 МГц, то макромодели, в том числе малосигнальные модели имеют большое значение при расчетах электронных схем СВЧ диапазона. Также представляют большой практический интерес методы измерения параметров этих моделей.

Второй способ построения высокочастотных моделей транзисторов основан на применении их малосигнальных схем замещения. В таком случае сначала с помощью типовых моделей транзисторов рассчитывается режим цепи по постоянному току и для этого режима измеряются, или рассчитываются, Y– или S–параметры транзисторов в заданном диапазоне частот. Рассмотрим эти схемы замещения для программы PSpice подробнее.

Макромодель на основе Y–параметров. Напомним уравнение линейного 4-полюсника (рисунке 2.3) в системе Y–параметров

(2.12)

Рисунок. 2.3 - Линейный 4-полюсник

Этой системе уравнений поставим в соответствие схему замещения транзистора на основе ИТУН (рисунок 2.4).

Рисунок 2.4 - Макромодель транзистора на основе Y–параметров

Приведем пример формальной макромодели транзистора КТ315В на основе Y–параметров, измеренных на частотах 5, 10 и 30 МГц для тока коллектора Iк=5 мА:

.subckt KT315V 2 1 3

G11 1 3 FREQ {V(1,3)}=

+ ( 5e6, -50.3, 31.6) (10e6, -48.0, 36.9) (30e6, -44.3, 41.0)

G12 1 3 FREQ {V(2,3)}=