Смекни!
smekni.com

Специальные схемы усилительных каскадов (стр. 2 из 3)

Схему можно упростить, уменьшив число резисторов. Если использовать биполярное питание, число резисторов можно еще уменьшить.

Входное сопротивление транзистора VT2, включенного по схеме с общей базой, равно 1/S2. Это сопротивление является нагрузкой транзистора VT1. Тогда его коэффициент усиления K1=S1/S2, если S1=S2, то K1=1. Общее усиление

,

т. е., как у обычного каскада.

Каскадная схема представляет собой соединение транзисторов, включенных с общим эмиттером (VT1) и общей базой (VT2). Сопротивление R2 соединяет транзисторы с источником питания. Сопротивление R1 и стабилитрон VD задают смещение на базе транзистора VT2.

Рассмотрим свойства каскадного соединения.

1)В схеме с общим эмиттером присутствует эффект Миллера, то есть входная емкость

,

так как K>>1, входная емкость – величина большая, что снижает частоту полюса входной цепи

. В каскодной схеме K=K1=1,

,

т. е. входная емкость существенно меньше.

2)Входное сопротивление каскодной схемы не зависит от параметров выходной цепи, т. е. присутствует развязка по входу и выходу.

3)Транзистор VT2 работает в режиме управления током транзистора VT1.

4)Так как транзистор VT2 включен по схеме с общей базой, его граничная частота


,

т. е. наличие второго транзистора не вносит искажения на высоких частотах.

Каскадная схема используется в дифференциальных каскадах. Если эмиттерных резисторов нет (Rэ=0), то коэффициент усиленияK=SRн. В противном случае

.

Как обычно, каскадная схема представляет собой соединение транзисторов, включенных с общим эмиттером (VT1,VT3) и общей базой (VT2,VT4). Дроссели L и резисторы Rэ представляют собой элементы коррекции.

4. Многокаскадные усилители. Амплитудно-частотные характеристики многокаскадных усилителей

На практике применяются многокаскадные усилители. Для многокаскадного усилителя комплексный коэффициент усиления (передачи) равен произведению комплексных коэффициентов передачи отдельных каскадов:

Аналогично коэффициент усиления

или
; фазочастотные характеристики также суммируются:

Рассмотрим область верхних частот. Нормированный коэффициент передачи некорректированного резисторного каскада


,

где

. Для двух каскадов АЧХ перемножаются.

Для N каскадов

.

Усиление

.

Рассмотрим искажения

.

Этим искажениям соответствует частота

, для которой получим:

или
и
,

откуда

.

Граничная частота

.

Пусть постоянная времени цепи

- величина постоянная. Тогда с ростом числа каскадов граничная частота
уменьшается, полоса сужается.

Так как обычно полоса усилителя задана, то постоянная времени цепи

,

т. е. постоянная времени каждого каскада с ростом их числа должна уменьшаться.

Так как

, то для уменьшения
необходимо снижать сопротивление нагрузки (так как емкость C0 уменьшить не удастся, это величина постоянная), значит снижается усиление каждого каскада. Сопротивление нагрузки может быть рассчитано по формуле

,

результирующее усиление

Найдем логарифм этого выражения:

Первое слагаемое учитывает увеличение коэффициента усиления за счет роста числа каскадов, второе слагаемое – отрицательное, учитывает уменьшение усиления за счет уменьшения усиления каждого каскада. Как видно из рисунка, при определенных частотах усиление перестает расти с ростом числа каскадов, многокаскадные усилители применять в этом случае невыгодно.


5. Переходные характеристики многокаскадных усилителей

Изображение переходной характеристики многокаскадного усилителя определяется путем перемножения изображений переходных характеристик отдельных каскадов:

.

Если каскады одинаковы, то

.

Для некорректированного резисторного каскада

,

,
.

Изображение и оригинал достаточно сложные, поэтому рассмотрим не сами переходные характеристики, а их свойства.

1. Вид переходных характеристик. При m=0,35 выброс каждого каскада

. Такой же выброс будет у N каскадов и не будет зависеть от их числа. С ростом числа каскадов увеличивается задержка и время установления.

Выброс

называют критическим выбросом. Если коэффициент коррекции m>0,35 , то выброс
, результирующий выброс увеличивается.

2. Таким образом для монотонных характеристик отдельных каскадов результирующий выброс больше выброса одного каскада и растет с ростом числа каскадов.

- время установления.

В случае одинаковых каскадов

. В случае переходных характеристик с выбросом время установления больше времени установления одного каскада, с ростом числа каскадов время установления увеличивается. Время установления можно определить по той же формуле, но при определенных выбросах оно может быть меньше. Вводится характеристика – коэффициент замедления, показывающий, во сколько увеличивается время установления при удвоении числа каскадов:

3. Для переходных характеристик с выбросом результирующий выброс при близких значениях времени установления определяется приближенно как

,

для одинаковых каскадов

при числе каскадов
и
при N>8.

4. Время задержки в многокаскадном усилителе равно сумме времен задержки каждого каскада.

Рассмотрим область больших времен. Как видно из рисунка, с ростом числа каскадов увеличивается спад переходных искажений. Если суммарный спад не превышает 30%, он определяется как сумма спадов и подъемов отдельных каскадов:

6. Выбор числа каскадов импульсных усилителей

При расчете импульсного усилителя обычно задано усиление

, время установления
, выброс
. Для одного каскада

,
.

Для некорректированного каскада (m=0)

, при m=0,35 (выброс
)
. Будем считать, что все каскады одинаковы, тогда результирующее усиление