Схему можно упростить, уменьшив число резисторов. Если использовать биполярное питание, число резисторов можно еще уменьшить.
Входное сопротивление транзистора VT2, включенного по схеме с общей базой, равно 1/S2. Это сопротивление является нагрузкой транзистора VT1. Тогда его коэффициент усиления K1=S1/S2, если S1=S2, то K1=1. Общее усиление
,т. е., как у обычного каскада.
Каскадная схема представляет собой соединение транзисторов, включенных с общим эмиттером (VT1) и общей базой (VT2). Сопротивление R2 соединяет транзисторы с источником питания. Сопротивление R1 и стабилитрон VD задают смещение на базе транзистора VT2.
Рассмотрим свойства каскадного соединения.
1)В схеме с общим эмиттером присутствует эффект Миллера, то есть входная емкость
,так как K>>1, входная емкость – величина большая, что снижает частоту полюса входной цепи
. В каскодной схеме K=K1=1, ,т. е. входная емкость существенно меньше.
2)Входное сопротивление каскодной схемы не зависит от параметров выходной цепи, т. е. присутствует развязка по входу и выходу.
3)Транзистор VT2 работает в режиме управления током транзистора VT1.
4)Так как транзистор VT2 включен по схеме с общей базой, его граничная частота
т. е. наличие второго транзистора не вносит искажения на высоких частотах.
Каскадная схема используется в дифференциальных каскадах. Если эмиттерных резисторов нет (Rэ=0), то коэффициент усиленияK=SRн. В противном случае
.Как обычно, каскадная схема представляет собой соединение транзисторов, включенных с общим эмиттером (VT1,VT3) и общей базой (VT2,VT4). Дроссели L и резисторы Rэ представляют собой элементы коррекции.
4. Многокаскадные усилители. Амплитудно-частотные характеристики многокаскадных усилителей
На практике применяются многокаскадные усилители. Для многокаскадного усилителя комплексный коэффициент усиления (передачи) равен произведению комплексных коэффициентов передачи отдельных каскадов:
Аналогично коэффициент усиления
или ; фазочастотные характеристики также суммируются:Рассмотрим область верхних частот. Нормированный коэффициент передачи некорректированного резисторного каскада
где
. Для двух каскадов АЧХ перемножаются.Для N каскадов
.Усиление
.Рассмотрим искажения
.Этим искажениям соответствует частота
, для которой получим: или и ,откуда
.Граничная частота
.Пусть постоянная времени цепи
- величина постоянная. Тогда с ростом числа каскадов граничная частота уменьшается, полоса сужается.Так как обычно полоса усилителя задана, то постоянная времени цепи
,т. е. постоянная времени каждого каскада с ростом их числа должна уменьшаться.
Так как
, то для уменьшения необходимо снижать сопротивление нагрузки (так как емкость C0 уменьшить не удастся, это величина постоянная), значит снижается усиление каждого каскада. Сопротивление нагрузки может быть рассчитано по формуле ,результирующее усиление
Найдем логарифм этого выражения:
Первое слагаемое учитывает увеличение коэффициента усиления за счет роста числа каскадов, второе слагаемое – отрицательное, учитывает уменьшение усиления за счет уменьшения усиления каждого каскада. Как видно из рисунка, при определенных частотах усиление перестает расти с ростом числа каскадов, многокаскадные усилители применять в этом случае невыгодно.
Изображение переходной характеристики многокаскадного усилителя определяется путем перемножения изображений переходных характеристик отдельных каскадов:
.Если каскады одинаковы, то
.Для некорректированного резисторного каскада
, , .Изображение и оригинал достаточно сложные, поэтому рассмотрим не сами переходные характеристики, а их свойства.
1. Вид переходных характеристик. При m=0,35 выброс каждого каскада
. Такой же выброс будет у N каскадов и не будет зависеть от их числа. С ростом числа каскадов увеличивается задержка и время установления.Выброс
называют критическим выбросом. Если коэффициент коррекции m>0,35 , то выброс , результирующий выброс увеличивается.2. Таким образом для монотонных характеристик отдельных каскадов результирующий выброс больше выброса одного каскада и растет с ростом числа каскадов.
- время установления.В случае одинаковых каскадов
. В случае переходных характеристик с выбросом время установления больше времени установления одного каскада, с ростом числа каскадов время установления увеличивается. Время установления можно определить по той же формуле, но при определенных выбросах оно может быть меньше. Вводится характеристика – коэффициент замедления, показывающий, во сколько увеличивается время установления при удвоении числа каскадов:3. Для переходных характеристик с выбросом результирующий выброс при близких значениях времени установления определяется приближенно как
,для одинаковых каскадов
при числе каскадов и при N>8.4. Время задержки в многокаскадном усилителе равно сумме времен задержки каждого каскада.
Рассмотрим область больших времен. Как видно из рисунка, с ростом числа каскадов увеличивается спад переходных искажений. Если суммарный спад не превышает 30%, он определяется как сумма спадов и подъемов отдельных каскадов:
6. Выбор числа каскадов импульсных усилителей
При расчете импульсного усилителя обычно задано усиление
, время установления , выброс . Для одного каскада , .Для некорректированного каскада (m=0)
, при m=0,35 (выброс ) . Будем считать, что все каскады одинаковы, тогда результирующее усиление