• предусмотрены языковые средства для описания любой используемой в АСУ
информации;
• унифицированы используемые языковые средства;
• стандартизованы описания однотипных элементов информации и записи
синтаксических конструкций;
• обеспечены удобство, однозначность и устойчивость общения пользователей со средствами автоматизации АСУ;
• предусмотрены средства исправления ошибок, возникающие при общении
пользователей с техническими средствами АСУ.
8.3 Лингвистическое обеспечение АСУ должно быть отражено в документации
(инструкциях, описаниях) организационного обеспечения АСУ в виде правил общения пользователей с техническими средствами АСУ во всех режимах функционирования системы.
9. Требования к правовому обеспечению АСУ.
Правовое обеспечение АСУ должно включать совокупность правовых норм:
• определяющих юридическую силу информации на носителях данных и документов, используемых при функционировании АСУ и создаваемых системой;
• регламентирующих правоотношения между людьми, входящими в состав персонала АСУ (права, обязанности и ответственность), а также между персоналом АСУ и персоналом систем, взаимодействующих с АСУ.
10. Требования к эксплуатационной документации на АСУ.
10.1 Эксплуатационная документация на АСУ должна быть достаточной для ввода АСУ в действие и ее эффективного функционирования.
10.2 Эксплуатационная документация на АСУ должна:
• содержать сведения, необходимые для быстрого и качественного освоения и
правильной эксплуатации средств автоматизации АСУ;
• содержать указания по деятельности персонала АСУ в аварийных ситуациях или при нарушении нормальных условий функционирования АСУ;
• не содержать положений, допускающих неоднозначное толкование.
3.2 Требования к ТСА и качество управления
Качество управления технологическим процессом характеризуется выполнение системой функций:
• автоматический сбор значений параметров технологического процесса;
• анализ значений контролируемых параметров технологического процесса;
• автоматическое управление параметрами технологического процесса;
• определение внешних ситуаций.
3.3 Анализ качества управления существующей САУ
Анализ возложенных на систему управления функций показал, что для обеспечения сбора значений параметров технологических процессов котельный агрегат и его технологическое оборудование должны быть оснащены датчиками, а для управления параметрами – исполнительными устройствами. Конечно же, для осуществления анализа значений контролируемых параметров, формирования управляющих воздействий, определения внештатных ситуаций необходимо вычислительное устройство – автоматический регулятор, обеспечивающий сравнение полученных значений параметров со значениями параметров нормального течения процесса – установок.
4.1 Обоснование выбора ТС
Выбор технических средств осуществлялся по многим критериям:
• соответствие ГОСТу;
• качество;
• надёжность;
• температурные диапазоны работы;
• регулировочный диапазоны работы;
• унифицированный выход сигналов;
• соответствие рабочим средам;
• технологическая совместимость ТС и т.д.
4.2 Перечень и спецификация ТС САУ
Датчик разности давлений, МЕТРАН-150 CD (150 CDR).
Технические характеристики:
• диапазон пределов измерений гидростатического
давления (уровня) 0,63 – 2060 кПа;
• температура окружающей среды -40…80°С;
• поворот корпуса / поворот ЖКИ 180°/360° (с шагом 90°);
• корозионностойкость — измерение давления агрессивных сред
• конструкция Coplanar позволяет присоединять интегральные вентильные блоки, выносные мембраны (разделители), первичные преобразователи расхода;
• высокая перегрузочная способность и стойкость к пневмо- и гидроударам, исключающая выход сенсора из строя;
• стабильность «нуля»;
• выходные сигналы:
- аналоговый токовый (0-5 мА);
- HART-протокола (4-20 мА);
• межповерочный интервал / гарантийный срок эксплуатации 3 года и т.д.
Диафрагма камерная (2 шт).
ДКС06-200-А/Б-1 ГОСТ8.563.1…8.563.3, производство ЗАО «Метран».
Интеллектуальный вихревой расходомер ЭМИС-ВИХРЬ 200-2шт..
Технические характеристики:
• измеряемая среда:
- жидкость;
- газ (в том числе кислород);
- пар;
• динамический диапазон:
- до 50:1 для газа и пара;
- до 40:1 для жидкостей;
• присоединение к трубопроводу
- фланцевое (от 25 до 300 мм);
- фланцевое с коническими переходами (от 25 до 300 мм);
- сэндвич (от 15 до 200 мм);
• давление измеряемой среды до 6,3 МПа;
• температура измеряемой среды от -40°С до +460°С;
• выходные сигналы:
- аналоговый токовый 4-20 мА;
- частотный до 10000 Гц;
- цифровой RS-485 Modbus RTU;
• температура окружающей среды от -40°С до +70°С;
• межповерочный интервал / гарантийный срок эксплуатации 4 года и т.д..
Контроллер Mitsubishi ALPHA XL AL2-24MR-A.
Технические характеристики:
• надёжная среда программирования FunctionBlockDiagram (FBD);
• конфигурация системы: - AL-232 CAB;
- AL2-GSM-CAB;
- RS-232C;
- RS-485;
- передача данных через GSM-модем;
• модуль PID-регулятора с автонастройкой;
• встроенные часы реального времени (радио-часы DCF77);
• источник питания:
- напряжение 100...240 В;
- частота 50…60 Гц;
- потребляемая мощность 7,0 Вт;
• количество цифровых входов 15;
• количество выходов 9;
• ЖК дисплей 12 символов, 4 строки.
Кран шаровый ФБ39.Х14.100 c электроприводом AUMA SG07.1-11.
- фланцевое; - муфтовое;
- под приварку;
• полный срок службы не менее 10 лет.
Технические характеристики электропривода AUMA SG07.1-11:
• мощность двигателя 0,160 кВт;
• номинальный ток 0,6 А;
• температура окружающей среды −25 °C до + 70 °C.
5.1 Обоснование выбора структуры регулятора
Применение пропорционально-интегрального (ПИ) закона регулирования для астатического объекта с явлением "набухания*" не обеспечивает требуемого качества регулирования (длительные слабо затухающие колебания уровня при ступенчатом входном возмущении). Интегральный (И) закон также дает плохую устойчивость системы. Пропорциональный (П) закон не допустим из-за статической ошибки регулирования. Поэтому для регулирования уровня в парогенераторах применяют комбинированную АСР: регулирование по отклонению с П-регулятором и контуром инвариантности по основному возмущающему воздействию - расходу пара.
2-импульсная схема регулирования не применяется по следующим причинам:
1) расход питательной воды через регулирующий питательный клапан зависит не только от положения клапана, но и от перепада давления на нем, который в процессе эксплуатации может изменяться;
2) в дифманометрах-расходомерах прежних лет выпуска выходной сигнал был пропорционален корню квадратному из перепада давления.
Указанные недостатки 2-контурной АСР устраняются введением в регулятор третьего импулься по расходу питательной воды от расходомера. Такая 3-импульсная АСР изображена на рис.2.
5.2 Функциональная схема принцип действия регулятора
Принцип работы АСР следующий. Сигналы по расходу пара и питательной воды вводятся в регулятор с противоположными знаками. В установившемся состоянии эти сигналы равны, противоположны по знаку и, следовательно, компенсируют друг друга.
Сигнал по уровню воды в парогенераторе компенсируется сигналом задания. При изменении расхода пара мгновенно изменяется соответствующий сигнал на входе в регулятор и последний пропорционально изменяет расход питательной воды, не дожидаясь изменения уровня.
Рис.2. Функциональная схема САУ.
1-датчик расхода пара; 2-барабан; 3-дифференциальный датчик давления; 4-водяной экономайзер; 5-контроллер; 6-регулирующий клапан питательной воды; 7-датчик расхода питательной воды.
В регуляторе используется ПИ-закон регулирования, однако вследствие ввода в регулятор практически безинерционной отрицательной обратной связи по расходу питательной воды в нем реализуется П-закон регулирования (аналогия жесткой обратной связи по положению регулирующего органа). Статическая неравномерность П-регулятора устраняется корректирующим сигналом по расходу пара.
Увеличение потребления пара потребителям при неизменной подаче топлива приведёт к уменьшению давления в барабане котла, что вызовет увеличение объёма пароводяной эмульсии, так называемое «набухание».
6.1 Способы обеспечения высокой надёжности САУ
Надежность - свойство системы сохранять во времени и в установленных пределах значения всех параметров, характеризующих способность системы выполнять требуемые функции в заданных режимах и условиях эксплуатации.
Надежность системы в большинстве случаев трудно непосредственно получить из первичной информации, кроме того, она не позволяет оценить влияние различных этапов разработки и эксплуатации системы, поэтому надежность рассматривают по трем главным составляющим, которые являются свойствами системы и могут характеризоваться как качественно, так и количественно:
- безотказность-свойство системы сохранять работоспособность в течение требуемого интервала времени непрерывно без вынужденных перерывов.
- восстанавливаемость (ремонтопригодность)-свойство системы, заключающееся в ее приспособленности к предупреждению, обнаружению и устранению причин возникновения отказов, а также поддержанию и восстановлению работоспособного состояния путем проведения технического обслуживания и ремонтов;