Смекни!
smekni.com

Источники электропитания (стр. 4 из 6)

Имея принципиальные схемы функциональных узлов можно составить принципиальную схему стабилизатора напряжения. Принципиальная схема стабилизатора напряжения представлена на рисунке 3.5.

Рисунок 3.5 — Принципиальная схема стабилизатора напряжения

Принцип действия стабилизатора напряжения заключается в том, что в случае изменения тока нагрузки в сторону увеличения, например, выходное напряжение уменьшается за счет увеличения падения напряжения на «переходе» коллектор-эмиттер регулирующего транзистора VTp, который состоит из транзисторов VT2, VT3 и VT4, соединенных последовательно. Это вызовет уменьшение напряжения UНД на нижнем плече делителя напряжения. Вследствие этого потенциал базы транзистора VT5 станет менее положительным, что вызовет уменьшение его базового и коллекторных токов. Ток базы транзистора VTp станет больше, что приведет к уменьшению падения напряжения на «переходе» коллектор-эмиттер транзистора VT4. Выходная величина увеличится до первоначального значения.

При изменении входного напряжения U0 (например, увеличение) в начальный момент времени начнет увеличиваться выходное напряжение UН, что приведет к увеличению напряжения UНД нижнем плече делителя. Напряжение UНД сравнивается с опорным напряжением UОП стабилитрона VD7. Увеличение напряжения UНД приводит к увеличению положительного потенциала базы транзистора VT5 и уменьшению тока базы транзистора VTp, состоящего из транзисторов VT2, VT3 и VT4, соединенных последовательно относительно эмиттера. Ток базы транзистора VTp уменьшается, что приводит к увеличению напряжения на «переходе» коллектор-эмиттер. Напряжение на выходе уменьшается до первоначального с определенной точностью. Регулирование выходного напряжения в схеме осуществляется потенциометром R9. При перемещении движка потенциометра в направлении плюсовой шины стабилизатора увеличивается напряжение UНД, что приводит к увеличению токов базы и коллектора VTp будет уменьшаться, увеличивая напряжение на «переходе» коллектор-эмиттер данного транзистора и напряжение на выходе стабилизатора будет уменьшаться. При перемещении движка потенциометра в сторону минусовой шины напряжение на выходе стабилизатора будет увеличиваться.


4 РАСЧЕТ СТАБИЛИЗАТОРА

4.1 Расчет силовой части стабилизатора

Определяем максимальный ток через регулирующий транзистор VТ4

где IН – номинальный выходной ток нагрузки, А;

IВН – ток потребляемый схемой стабилизатора равный 20-30 мА.

Определяем максимальное выходное напряжение стабилизатора

где Uвых – номинальный выходное напряжение, В;

k– нестабильность выходного напряжения в %., k = 0,02.

Определим амплитуду пульсации на входе стабилизатора

Зададимся значением Uкэ4min = 2В

Определим минимальное напряжение на входе стабилизатора.

Определим номинальное напряжение на входе стабилизатора

где amin=0,2

Определим максимальное напряжение на входе стабилизатора

где amax=0,2

Определим min выходное напряжение стабилизатора

Определим напряжение коллектор-эмиттер на транзисторе VТ4

Из подсчитанных данных видно, что Uкэ4=17В будет максимальным.

Определим максимальную рассеивающую мощность транзистора.

Выбираем транзистор VТ4 по следующим параметрам:

По [6] выбираем транзистор типа П210Ш

Определим минимальные и максимальные токи базы

Количество транзисторов входящих в составной зависит от максимальной величины тока коллектора транзистора VТ4 Iк4max и тока коллектора транзистор усилителя VT6 Iку. Их число должно быть таким, чтобы ток базы составного транзистора Iбр был на порядок меньше тока коллектора Iку. Так, как в качестве VT6 используется маломощные транзисторы и величина тока Iку составляет 2¸5мА, то соответственно ток Iбр должен быть равен 0,2¸0,5 мА. Из рассчитанных данных видно, что необходим транзистор VТ3.

Определим ток, который протекает через резистор R5:

Iбmin»0

Определим величину сопротивления R5

По [7] выбираем резистор R5=1,8кОм

Мощность рассеиваемая на R5

Выбираем резистор типа C2-23-0,25-1,8к

Определим максимальный ток коллектора VТ3

Максимальное напряжение на переходе

Из подсчитанных данных видно, что Uкэ4=17В будет максимальным.

Определим максимальную рассеивающую мощность транзистора.

Выбираем транзистор VТ3 по следующим параметрам:

По [8] выбираем транзистор типа ГТ403А

Определим минимальные и максимальные токи базы

Если величина Iб3max>(0,3¸0,5)мА, то необходимо увеличить число транзисторов входящих в составной до 3.

Для выбора транзистора VТ2 необходимо определить величину тока через резистор R4, сопротивление R4, ток Ik2max, напряжение Uкэ2max и мощность Pkv2.

Определим ток, который протекает через резистор R4:

Iбmin»0

Определим величину сопротивления R4

По [7] выбираем резистор R4=270кОм

Мощность рассеиваемая на R4

Выбираем резистор типа C2-23-0,125-270к

Определим максимальный ток коллектора VТ2

Максимальное напряжение на переходе

Определим максимальную рассеивающую мощность транзистора.

Выбираем транзистор VТ2 по следующим параметрам:

По [9] выбираем транзистор типа МП-20:

Определим минимальные и максимальные токи базы

Если величина Iб2max<0,3мА, то количество транзисторов равно 3.

4.2 Расчет схемы сравнения и УПТ

Определяем величину опорного напряжения:

По [8] в качестве источника опорного напряжения стабилитрона VD7 выбираем стабилитрон типа КС218Ж с параметрами:


Задаемся максимальным током коллектора усилителя транзистора Т5 и Т6:

Определить максимальное напряжение на переходе коллектор-эмиттер VТ5 и VТ6:

Определим максимальную мощность рассеиваемую на VТ5 и VТ6: