Программный комплекс Or-CAD включает в себя взаимосвязанные пакеты программ, образующих систему сквозного проектирования ПП электронной аппаратуры. В ее состав входят следующие программы:
· Or-CAD Capture – графический ввод и редактирование принципиальной электрической схемы, графический ввод и редактирование символов радиоэлектронных компонентов на принципиальных схемах;
· Layout Plus – графический ввод и редактирование корпусов компонентов РЭА и стеков контактных площадок. Автоматическое или ручное размещение компонентов на плате;
Система САПР Or-CAD не позволяет выполнять выпуск КД на печатный узел и подготовку ТД, удовлетворяющих, указанным в п.1 (анализ ТЗ), ГОСТам. Поэтому, как оговаривалось раньше, необходима доработка результатов проектирования средствами пакета САПР AutoCad. К таким доработкам относятся следующие:
- редактирование ранее созданного текста;
- создание текста содержащего символы кирилицы;
- простановка размеров на печатном узле;
В связи с тем, что в системе САПР AutoCad возможно более быстрое и эффективное создание графических примитивов, то рисование рамки, штампа основой надписи, редактирование ранее созданных графических примитивов в системе Or-CAD целесообразно производить средствами пакета САПР AutoCad. Так как эта система позволяет создавать окружности более сглаженной округлой формы (в дальнейшем это явно выразится при выводе результатов проектирования на печатающее устройство (принтер)), то необходимо произвести корректировку результатов, полученных в Or-CAD, средствами AutoCad.
Как и система Or-CAD система AutoCAD поддерживает слойность чертежа. Слои обладают свойствами сходными со слоями Or-CAD, что дает возможность редактировать чертежи созданные Or-CAD-ом. Слои в AutoCAD могут содержать имя слоя, состоящее из символов и цифр-букв, они могут переходить из включенного состояния в выключенное и наоборот.
Решение задачи топологического синтеза с помощью пакета САПР OrCAD сводится к получению чертежей топологии ПП в соответствии с созданной схемой ЭП и технологическими ограничениями на разрабатываемый печатный узел, оговоренными в исходных данных к курсовому проектированию. Для задания технологических ограничений необходимо использовать средства Layout или SmartRoute.Средствами программы Layout создаётся: контур ПП, барьеры для прокладки трасс в местах крепёжных отверстий печатного узла и технологической зоне по периметру платы.
Производится размещение компонентов. Для этого определяется:
- координатная сетка с шагом 2,5 мм, в узлах которой будут размещаться компоненты, а также определяется ориентация размещаемых на ней компонентов;
- барьеры для прокладки трасс в местах крепления корпусов компонентов (разъёмов);
- список компонентов для размещения и положение дискретных компонентов относительно основных, а также допустимые зазоры между компонентами.
Затем производится фиксация компонентов (разъёмов), не подлежащих перемещению в дальнейшем.
Используя средства программы Layout, задаются параметры и правила для трассировки ПП.
Пункт Options / System Settings:
- устанавливается метрическая система единиц, мм;
- устанавливаются параметры координатной сетки – шаг основной координатной сетки, в узлах которой будут размещаться центры проводников и переходных отверстий, равен 1,25мм, шаг сетки размещения барьера и текста и шаг сетки размещения компонентов равен 2,5;
2. Пункт View / Database Spreadsheets / Layer. Просматривается и редактируется структура слоев.
– слоям Top и Bottom ставим тип слоя Routing, слоям GND и POWER – Plane соответственно.
3. Пункт View / Database Spreadsheets / Padstacks. Просматриваются и редактируются стеки контактных площадок и переходные отверстия. Учитываем, что первый вывод в микросхеме должен быть отличной формы от других, поэтому установим его квадратным
4. Пункт View / Database Spreadsheets / Nets. Просматриваются и редактируются параметры цепей;
– разрешаем повторную трассировку для перерасположения трассы;
– разрешаем соеденять участеи цепи для Т- образных соеденений;
– шинам “ земли” и питания задаем большй приоретет трассировки
5. Пункт Options / Global Spacing
– приводим значения зазоров между проводниками, между проводниками и контактными площадками, между проводниками и отверстиями, между отверстиями для всех слоев ПП.
6. Пункт Options / Route Settings. Задаются глобальные параметры стратегии трассировки.
7. Пункт Options / Route Strategies / Manual Route. Задаются частные параметры стратегии трассировки.
– Via cost - устанавливаем значение веса переходного отверстия равным 20.
– Retry cost – при большом значении данного весового коэфициента увеличивается число повторных попыток расположить связь. Ставим значение 80.
– Routed Limit – коэффициент влияния на длину трассы.Cтавим значение 100
– Attemps – число попыток перерасположить связь. Ставим 2.
8. Пункт Options / Route Strategies / Route Layers. Сведения о трассировке слоев.
– Routing Enabled – разрешение трассировки в данном слое.
– Layer Cost – коэффициент определяющий предпочтительные слои для трассировки. При высоком значении коэффициента трассировщик будет стараться избегать данный слой при трассировке.
– Direction - весовой коэффициент направления трассировки.
9. Пункт Options / Route Strategies / Between – весовой коэффициент , который при большом значении ограничивает проведение связей между выводами.
10. Пункт Options / Route Strategies / Route Sweep – указываются параметры разверток.
– 45S – разрешает проведение диогональных связей.
11. Пункт Options / Route Strategies / Route Passes – параметры прохода трассировки.
– Name – имена проходов;
– Pass – определяет проходы для данной разверки;
– Enable – используемость данного прохода;
– Options – тип прохода
- Henristics;
- Maze;
- Auto DFM – алгоритм улучшения трассировки;
- Fan out - алгоритм для развоки элементов с поверхностным монтажем;
- Via Reduce – минимизатор ПО-ий;
- Auto CDE – алгоритм , удаляет ошибки проекта.
Именно в Layout Plus делаются начальные установки и расположение элементов на плате. Далее данные из Layout передаются в SmartRoute.
SmartRoute – Быстрый трассировщик с малым количеством настроек и установок, предназначенный для тестовых промежуточных трассировок, особенно полезных при расстановке элементов по полю платы. Хорошо зарекомендовал себя при оконечной работе с простыми схемами, особенно на мелкой логике. Практика использования данного трассировщика показывает, что его применение в случае печатных плат с большой плотностью расположения компонентов и большим количеством связей даёт вполне приемлемый выходной результат, и при этом заметно сокращается время трассировки по сравнению с Layout Plus.
После того, как мы растрассировали плату, необходимо оформить ее как чертежи топологии в соответствии с требованиями, регламентированными ГОСТами. Система OrCAD не позволяет полностью провести оформительскую работу, и поэтому воспользуемся системой AutoCAD. Для того чтобы AutoCAD смог “прочитать” чертежи, выполненные в системе Or-Cad, преобразуем файлы с расширением .max в файлы формата “.dxf”.
После преобразования мы загружаем файлы в AutoCAD. Далее необходимо: нанести текст в штампе основной надписи, а также технические требования к полученным чертежам, сделать вид сбоку на полученный сборочный чертёж для получения информации о габаритах печатного узла, проставить необходимые размеры и допуски на изделие.
5.3.2 Оценка качества разработанной конструкции
Оценку качества разрабатываемой конструкции можно проводится постепенно, по мере разработки конструкции.
После создания базы данных принципиальной электрической схемы с помощью программы Capture выявляются ошибки, после их исправления можно приступить к разработке ПП.
Для проверки принципиальной схемы в окне менеджера проекта необходимо выполнить команду Tools / Design Rules Check. В появившемся меню необходимо установить контроль всех параметров на наличие ошибок. Результаты проверки заносятся в текстовый файл с расширением .drc.
В выходном файле приводится список ошибок каждого вида и их подробное описание.
Теперь осуществим проверку платы на соответствие ее требуемым технологическим ограничениям.
Как уже отмечалось ранне, трассировка платы производилась в SmartRout. Важным моментом можно отметить то обстоятельство, что программа SmartRoute не позволяет проводить после окончания процесса трассировки технологической проверки правильности разводки печатных проводников и соблюдения определённых норм. Так, чтобы провести данную проверку необходим обратный переход в Layout Plus.
Утилита Design Rules Check проверяет разведенную базу данных ПП и выявляет не разведенные проводники, нарушение технологических требований к проектированию ПП.
Результаты проверок приводятся в приложении.
5.4 Конструкторские расчеты
5.4.1 Компоновочный расчет устройства
Компоновка блока - размещение на плоскости и в пространстве различных компонентов (радиодеталей, микросхем, блоков , приборов) РЭА - одна из важнейших задач при конструировании, поэтому очень важно выполнить рациональную компоновку элементов на самых ранних стадиях разработки РЭА.
Основная задача, решаемая при компоновке РЭА - это правильный выбор форм, основных геометрических размеров, ориентировочное определение веса и расположения в пространстве любых элементов или изделий радиоэлектронной аппаратуры. На практике задача компоновки РЭА чаще всего решается при использовании готовых элементов с заданными формами, размерами и весом, которые должны быть расположены в пространстве или на плоскости с учетом электрических, магнитных, механических, тепловых и других видов связей. Имея принципиальную схему и компоновочный эскиз функционального узла, можно еще до разработки рабочих чертежей и изготовления лабораторного макета оценить возможный характер и величину паразитных связей, рассчитать тепловые режимы узла и его элементов, выполнить расчет надежности с учетом не только режимов работы схемы (электрические коэффициенты перегрузки), но и с учетом рабочих температур элементов. Методы компоновки элементов РЭА можно разбить на две группы: аналитические и модельные. К первым относятся численные (аналитические) и номографические, основой которых является представление геометрических параметров и операций с ними в виде чисел. Ко вторым относятся аппликационные, модельные, графические и натурные методы, основой которых является та или иная физическая модель элемента, например в виде геометрически подобного тела или обобщенной геометрической модели. Основой для всех является рассмотрение общих аналитических зависимостей. При аналитической компоновке мы оперируем с численными значениями различных компоновочных характеристик: геометрическими размерами элементов, их объемами, весом, энергопотреблением и т.п. Зная соответствующие компоновочные характеристики элементов изделия и законы их суммирования, можно вычислить компоновочные характеристики всего изделия и его частей.