28. Методы компоновки элементов ЭВА можно разбить на две группы: аналитические и модельные. К первым относятся численные (аналитические) и номографические, основой которых является представление геометрических параметров и операций с ними в виде чисел. Ко вторым относятся аппликационные, модельные, графические и натурные методы, основой которых является та или иная физическая модель элемента, например в виде геометрически подобного тела или обобщенной геометрической модели.
29. Основой для всех является рассмотрение общих аналитических зависимостей. При аналитической компоновке мы оперируем с численными значениями различных компоновочных характеристик: геометрическими размерами элементов, их объемами, весом, энергопотреблением и т.п. Зная соответствующие компоновочные характеристики элементов изделия и законы их суммирования, можно оценить компоновочные характеристики всего изделия и его частей.
4 СХЕМОТЕХНИЧЕСКОЕ ПРОЕКТИРОВАНИЕ
4.1 РАЗРАБОТКА СТРУКТУРНОЙ СХЕМЫ УСТРОЙСТВА
Модуль реализован на базе цифрового микроконтроллера МС68НС711Е9 фирмы Motorola.Данный модуль выполняет следующие функции:
- -ввод с клавиатуры требуемого значения времени ,вывод текущего значения времени на жидкокристаллический дисплей;
- -регистрация текущего значения времени и контролируемого параметра в энергонезависимой памяти;
- -выдачу сообщения об отклонении сигнала от заданного на ЖКИ и центральный компьютер;
- -обмен информацией с центральным компьютером типа IBM PC ;
- -регулирование контролируемого параметра во времени по заданному закону.
Проанализировав выполняемые функции выделим следующие структурные элементы:
- силовая часть;
- электрическая развязка;
- управление уровнем выходного сигнала;
- наборное поле;
- сброс микроконтроллера при включении и снижении питания ниже уровня 0,5 В ;
- датчик входного сигнала;
- аналогово-цифровой преобразователь входного сигнала;
- микроконтроллер;
- ЦАП выходного сигнала для ЖКИ;
- индикация;
- преобразование уровней сигнала для связи с центральным компьютером.
Взаимосвязи между этими структурными элементами приведены в приложении .
4.2 ВЫБОР И ОБОСНОВАНИЕ ПРИМЕНЯЕМОЙ ЭЛЕМЕНТНОЙ БАЗЫ
Выбор элементной базы необходимо производить исходя из условий эксплуатации устройства. Таким образом, ко всем электрорадиоэлементам схемы, ко всем конструкционным материалам и изделиям предъявляются те же требования, что и ко всему устройству в целом.
Выбор ЭРЭ производится на основе требований к аппаратуре, в частности, кинематических, механических и других воздействий при анализе работы каждого ЭРЭ и каждого материала внутри блока, и условий работы каждого блока конструкции.
Выбор резисторов будем производить учитывая:
- эксплуатационные факторы (интервал рабочих температур, относительную влажность окружающей среды, атмосферное давление и др.);
- значение электрических параметров и их допустимое отклонение в процессе эксплуатации (номинальное сопротивление, допуск, и др.)
- показатели надежности и долговечности;
- конструкцию резисторов, способ монтажа, массу.
В целях повышения надежности и долговечности резисторов (и других ЭРЭ), во всех возможных случаях следует использовать их при менее жестких нагрузках и в облегченных режимах по сравнению с допустимыми.
Исходя из схемы электрической принципиальной, определяем, что постоянные резисторы должны обеспечивать номинальную мощность 0,0125 Вт. При этом используются резисторы сопротивлением 10 Ом.
Учитывая все эти характеристики (требования по габаритам и массе, требования в области кинематических и механических воздействий), можно сделать вывод, что перечисленным требованиям удовлетворяют постоянные непроволочные резисторы общего назначения типа МЛТ.
Резисторы этого типа имеют характеристики, приведенные в таблице 4.2.1.
Таблица 4.2.1 - Эксплуатационные характеристики резисторов типа МЛТ
Характеристика | Значение |
Диапазон номинальных сопротивлений при мощности 0,125 Вт | 10 ...100000 |
Уровень собственных шумов , мкВ/В | 1,5 |
Температура окружающей среды , оС | от -60 до +70 |
Относительная влажность воздуха при температуре +35 оС, % | до 98 |
Пониженное атмосферное давление, Па | до 133 |
Предельное рабочее напряжение постоянного и переменного тока. В | 200 |
Минимальная наработка, ч | 25000 |
Срок сохраняемости, лет | 25 |
Эксплуатационная надежность конденсаторов, так же как и резисторов, во многом определяется правильным выбором их типа и возможного использования их в режимах, не превышающих допустимые.
Для правильного выбора типа конденсаторов необходимо, с учетом требований к устройству, принимать во внимание следующие факторы:
- значение номинальных параметров и их допустимые изменения в процессе эксплуатации (номинальная емкость, допуск и др.);
- эксплуатационные факторы;
- показатели надежности и долговечности;
- конструкцию конденсаторов, способы их монтажа, габариты и массу.
С учетом всех выше изложенных требований произведем выбор конденсаторов постоянной емкости.
В качестве таких конденсаторов выбираем конденсаторы типа КМ-6А.
Эксплуатационные характеристики конденсаторов этого типа приведены в таблице 4.2.2.
Таблица 4.2.2 -Эксплуатационные характеристики конденсаторов КМ-6а
Характеристика | Значение |
1 | 2 |
Температура окружающей среды, оС | От -60 до +85 |
Относительная влажность воздуха , % | До 98 |
Атмосферное давление, мм.тр.ст | 10-6 до 3атм. |
Вибрационные нагрузки с ускорением в диапазоне 5 - 200 Гц | 10g |
Многократные удары с ускорением | до 35g |
Линейные нагрузки с ускорением , не более | 100g |
Тангенс угла потерь, не более | 0,0012 |
Минимальная наработка, ч | 15000 |
Срок сохранения, лет | 12 |
Схема электрическая принципиальная содержит также и полярные конденсаторы. С учетом всех требований предъявляемых к ним выберем электролитические конденсаторы типа К50-29 .
Эксплуатационные характеристики конденсаторов этого типа приведены в таблице 4.2.3.
Таблица 4.2.3 - Эксплуатационные характеристики конденсаторов типа К50-29
Характеристика | Значение |
Температура окружающей среды, оС | от -20 до +70 |
Относительная влажность воздуха, % | до 98 |
Атмосферное давление, кПа | от 1,3 до 2942 |
Вибрационные нагрузки с ускорением в диапазоне 1 - 600 Гц | до 10 g |
Многократные удары с ускорением | до 15 g |
Линейные нагрузки с ускорением | до 100 g |
Допустимые отклонения емкости, % | от -20 до +80 |
Минимальная наработка, ч | 5000 |
Срок сохранения, лет | 5 |
В данном устройстве используются и интегральные микросхемы. При выборе типов микросхем будем учитывать совместимость их с динамическими параметрами MC69HC11E9 и в соответствии с функциональным назначением микросхем. С учетом этого можно выбрать следующие интегральные микросхемы: КР140УД12,МС145000,МС145407,МС34064,МС7805.
Приведем краткую характеристику Микроконроллера МС68НС711Е9.
Данное семейство микроконтроллеров является одним из наиболее распространенных в мире.Условные обозначения, которыми маркируются микроконтроллеры семейства, имеют вид:
Микроконтроллер содержит внутреннюю память программ (ППЗУ) емкостью 12 Кбайт, ОЗУ емкостью 512 байт. Модель имеют внутреннее ЭСППЗУ емкостью 512 байт.Микроконтроллер работает при напряжении питания Vn = 5 В, имеет максимальную тактовую частоту до Ft = 4 МГц. Потребляемая мощность составляет 150...300 мВт в диапазоне тактовых частот Ft = 2...4 МГц. В режиме ожидания мощность снижается в 2 раза, а в режиме останова не превышает 250 мкВт.
Рассмотрим особенности функционирования периферийных модулей, используемых в микроконтроллерах этого семейства.
Модель содержит 16-разрядный таймер, который имеет три входа фиксации 1C, четыре выхода совпадения ОС. Эти таймеры служат также для генерации периодических прерываний и контроля выполнения программы с помощью сторожевого устройства (watchdog). Кроме таймера микроконтроллер имеет также 8-разрядные счетчики импульсов.
Микроконтроллер содержит асинхронный и синхронный последовательные порты SCI, SPI, 8-разрядный АЦП, ,число аналоговых входов 8.
Внешний вид корпуса показан на рисунке 4.1
Рис.4.1 Корпус микроконтроллера МС68НС711Е9
Номинальные значения в мм
A 1.10
A1 0.64
A2 0.10
E1 12.00
E 10.00
D1 12.00
D 10.00
n1 16.00
n 64
c 0.15
B 0.22
L 0.30
R1 0.08
R2 0.14
alpha 10
beta 12
phi 3
L1 0.20
p 0.50
X 0.89
Микросхема МС145407 размещается в корпусе 751D-04.Вид корпуса показан на рисунке 4.2
Рис.4.2 Микросхема МС145407
4.3 РАЗРАБОТКА ПРИНЦИПИАЛЬНОЙ СХЕМЫ
Модуль реализован на базе цифрового микроконтроллера МС68НС711Е9 фирмы Motorola, выполнен в виде платы и размещается в корпусе. Модуль был разработан для задания и контроля продолжительности цикла технологического процесса .