Смекни!
smekni.com

Разработка маломощного стабилизированного источника питания (стр. 4 из 5)

Сопротивление резистора R3:


Полученное значение сопротивления резистора R3 приводим к стандартному ряду Е24

Общее сопротивление делителя:

Максимальный ток делителя определяется из выражения:

Сопротивление резистора R5 при условии протекания максимального тока делителя определяется как:

Полученное значение сопротивления резистора R5 приводим к стандартному ряду Е24 и выбираем ближайшее меньшее значение:

Сопротивление резистора R4 определим из выражения:

Полученное значение R4 приводим к стандартному ряду Е24 и выбираем ближайшее большее значение:

Далее пересчитываем максимальный ток делителя с учетом значений сопротивлений резисторов R3, R4, R5, выбранных из стандартного ряда Е24:


Мощность, рассеиваемая каждым резистором делителя, определяется из выражения:

Из справочника [9, 11] выбираем стандартные резисторы исходя из условия

:
.

Выберем резистор из справочника

BC 5Вт 56Ом +-5% Е24

Выберем резистор из справочника

ПЭВР С5–36В 15Вт 160 Ом +-5% Е24

Выберем резистор из справочника

МЛТ 0,125 Вт 275 Ом +-5% Е24

Конденсатор С1 служит для улучшения динамических показателей стабилизатора. Значение его ёмкости можно определить по формуле:


где

- частота единичного усиления регулирующего транзистора VT1. Далее из справочника [9, 11] выбираем конденсатор С1 таким образом, чтобы

Данным условиям соответствует конденсатор

КМ-5 70В 47*10^-9Ф

Вычислим коэффициент деления резистивного делителя R3, R4, R5 – а:

Динамическое входное сопротивление rех3динопределяется по входной характеристике транзистора VT3 для схемы с ОЭ по формуле:

Коэффициент усиления по напряжению для транзистора VT3 определяется из выражения:

Коэффициент стабилизации, полученный в результате расчета и выбора элементов стабилизатора, определяется по формуле:


Пульсацию входного напряжения стабилизатора можно определить из выражения:

Условием выполнения проверки является:

3.5 Расчет внешней характеристики

Для расчета внешней характеристики блока питания можно использовать его упрощенную схему замещения, которая представлена на рисунке 3.4.

Рисунок 3.5 – Схема замещения блока питания для расчета внешней характеристики

Динамические входные сопротивления rех1дин и rех2дин определяется по входным характеристикам транзисторов VT1 и VT2 для схемы с ОЭ по формуле:


Входное динамическое сопротивление первого и второго транзисторов соответственно:

где гвх1дини гвх2диндинамические входные сопротивления, соответствующих транзисторов VT1 и VT2, Ом.

Уравнение для внешней характеристики имеет вид:

Для построения внешней характеристики достаточно двух точек

3.7 Расчёт К.П.Д. источника питания

Расчет коэффициента полезного действия необходимо производить для работы стабилизатора, когда

Номинальная мощность нагрузки:

Вычислим токи

и
:

Мощность, рассеиваемую на регулирующем транзисторе стабилизатора, определим из выражения:

Напряжение на регулирующем транзисторе VT1:

Мощность, рассеиваемую на регулирующем транзисторе стабилизатора, определим из выражения:

Мощность потерь выпрямителя:

Мощность, рассеиваемая на всех резисторах схемы:

Общие потери:


Определяем КПД:

3.8 Расчет охладителя

Результатом расчета охладителя будет площадь охладителя, которая обеспечит рассеяние тепловой энергии, выделяемой на регулирующем транзисторе.

Тепловое сопротивление переход-корпус регулирующего транзистора:

Возможную температуру перегрева прибора определяем из выражения:

Коэффициент теплоотдачи принимаем равным:

Тогда площадь охладителя равна:

Заключение

Схема с линейным стабилизатором напряжения характеризуется невысокими значениями КПД, порядка 50%, наличием низкочастотного трансформатора. В сравнении с другими схемами реализуется наиболее просто.

Схема с импульсным стабилизатором может обеспечить достаточно широкий диапазон регулирования выходного напряжения. Обеспечивает КПД порядка 90…100%. В данной схеме может отсутствовать трансформатор. Однако импульсный стабилизатор напряжения содержит достаточно сложную систему управления, с обратной связью, которая должна реализовывать алгоритм ШИМ. Эта схема является достаточно сложной для реализации.

Схема с управляемым выпрямителем также, как и схема с импульсным стабилизатором, может обеспечивать достаточно широкий диапазон регулирования. Однако эта схема также содержит достаточно сложную систему управления с обратной связью. В связи с тем, что регулирование происходит на низкой частоте (импульсно-фазовое управление), то возникают дополнительные сложности при выборе выходных фильтров. При равных коэффициентах пульсации напряжения на нагрузке фильтр этой схемы должен иметь значительно большие габариты.

Схема с защитой по току и импульсным стабилизатором еще больше усложняет решение поставленной задачи, т.к. ее реализация предусматривает объединение двух предыдущих схем (рис. 1.2, 1.3).

Из вышеизложенного следует, что схема с компенсационным (линейным) стабилизатором является наиболее простой в реализации и может с успехом использоваться для решения поставленной задачи.


Литература

1. Диоды: Справочник / О.П. Григорьев, В.Я. Замятин, Б.В. Кондратьев, С.Л. Пожидаев. – М: Радио и связь, 1990 – 336 с.

2. Забродин Ю.С. Промышленная электроника: Учебник для вузов. – М.: Высш. школа, 1982.

3. Методические указания по оформлению курсовых проектов и работ / Сост.: Ю.Э. Паэранд, П.В. Охрименко – Алчевск: ДГМИ, 2002. – 50 с.