Смекни!
smekni.com

Устройство импульсного управления исполнительным двигателем постоянного тока (стр. 2 из 4)

Как правило, высококачественные ГЛИН создают на основе операционных усилителей. Мы будем использовать схему изображенную на рис.4

Рисунок 4 - Схема ГЛИН

Как видно из схемы на рис.4.

При исключении из данной схемы тиристора, подключенного параллельно конденсатору C, получается интегратор. Выходное напряжение определяется выражением:

Когда выходное напряжение превысит напряжение Uоп, тиристор откроется и конденсатор С разрядится через него. При этом напряжение UC = Uвых снизится до уровня напряжения Uоткр на тиристоре в открытом состоянии, после чего тиристор закроется, и процесс зарядки конденсатора постоянным током

повторится. Очевидно, для того чтобы операционный усилитель не входил в насыщение, необходимо выполнить условие
[2,стр.212].

Далее выберем операционный усилитель К140УД5Б, он имеет следующие основные характеристики [3, стр.403]

Коэффициент усиления не менее Кус = 3 ×104

Входное дифференциальное сопротивление Rвх.диф=2,5 МОм

Напряжение питания Uпит = ±5..±18 В

Максимальное выходное напряжение Uвых max= ±11 В

Сопротивление нагрузки, не менее Rн=1 кОм

Так же подберем тиристор. Наиболее подходящим является тиристор КУ103К обладающий следующими основными характеристиками [6]

Напряжение в открытом состоянии Uоткр= 1 В

Обратное напряжение Uобр =10 В

Прямой ток управляющего электрода Iпр=15 мА

Исходя из величины Iпр зададимся Uоп и Rб, при этом учтем условие

, т.е
.

Тогда, если

,

то получаем

.

Как известно управление ДПТ, как правило, осуществляют на частотах f = 10..1000 Гц. Тогда по формуле:

получим при C = 0.1 мкФ, f = 900 Гц , E = 15 В тогда R равно:

3.2 Расчет сравнивающего устройства

Сигнал с выхода ГЛИН (операционного усилителя) подается на один из входов компаратора напряжения. Наиболее подходящим компаратором является К554СА2, который имеет следующие основные характеристики [5, стр.158].

Коэффициент усиления Кu= 75×103

Напряжение высокого уровня (лог. 1) U1 = 2,5 ¸ 4 В

Напряжение низкого уровня (лог. 0) U0 = 0¸0.3 В

Напряжение питания Uпит = +12 ; -6 В

Минимальное сопротивление нагрузки Rnmin = 2 кОм

Рисунок 5 - Схема сравнивающего устройства


Рассчитаем работу компаратора: пусть Е=19 В. Для этого необходимо рассчитать полюса подстроечного (переменного) сопротивления R. Обозначим полюс, соединяющий с неинвертирующим входом компаратора, как R, а другой ( - земля) – как R”. Входным током компаратора можно пренебречь ввиду большого входного сопротивления. Т.к Uвх, на входе компаратора не превосходит 10В, необходимо, чтобы UmaxR=10 В, тогда получаем т.к.

,то получаем при R” = 100 кОм,

Сопротивление лучше всего взять СП-2-3б из ряда Е6, сопротивление из этого ряда наиболее распространены, имеют достаточную мощность и хорошие характеристики (точность подстройки 1%,

кОм).

3.3 Расчет исполнительного устройства

Исполнительное устройство в данной схеме представляет собой электрический ключ. Построение электрического ключа на основе составного биполярного транзистора обусловлено следующими факторами:

1) Отсутствие реверса в разрабатываемой схеме.

2) Сравнительная простота реализации электрического ключа на биполярном транзисторе.

3) Управление состоянием транзисторного ключа осуществляется с помощью управляющего входного сигнала.

4) Малый выходной ток компаратора.

5)Требования к минимальному сопротивлению нагрузки компаратора.

Реализация электрического ключа на основе составного биполярного транзистора приводит к уменьшению мощности, получаемой от предыдущего звена схемы. В этом случае пара транзисторов VT1, VT2 работает как один, но с коэффициентом усиления по току, равным:

.

При этом транзистор VT1 потребляет меньшую мощность и, как правило, обладает значительным коэффициентом по току.

Рисунок 6 - Составные транзисторы.

Выберем составные n-p-nтранзисторы, подключенные по схеме Дарлингтона. При работе составных транзисторов в ключевом режиме их включают обычно в цепь по схеме с общим эмиттером, как изображено на рис.6. Двигатель, которым необходимо управлять, как правило, включают в коллекторную цепь транзисторов. А для компенсации противо ЭДС якоря двигателя параллельно коллекторной цепи транзисторов включают диод VD1. Например, серии Д7Б с Uобр max= 100 В. Управляющий сигнал подают в цепь базы. При работе транзисторов в ключевом режиме цепь между коллектором и эмиттером может быть либо замкнута, либо разомкнута.


Рисунок 7 - Схема транзисторного ключа.

Т.к мы выбрали двигатель СЛ-525 [1], то получаем следующие входные данные для транзисторного ключа:

Uном= 110 В

Pном= 75 Вт

Iном = 1,2 А

Отсюда можем найти

Исходя из Uноми Iномвыберем транзистор VT2. Наиболее подходящим транзистором оказался: n-p-n транзистор КТ809А, который имеет следующие характеристики [7, стр.429]:

Статический коэффициент передачи тока в схеме с ОЭ

= 30

Обратный ток коллектора IK0 max = 3 мА

Постоянный ток коллектора IK = 3 А

Постоянное напряжение эмиттер-база UБЭ max = 4 В

Постоянный ток базы IБ = 1,5 А

Постоянное напряжение коллектор-эмиттер UКЭ max = 400 В

Постоянная рассеиваемая мощность коллектора РК max = 40 Вт

Рабочая температура pn– перехода Tn раб = - 60 +1250С

Максимальная температура перехода Тп max = 1500С

Зададимся значением Еп, пусть Еп= 110 В. Определим параметры схемы, необходимые для обеспечения режима насыщения транзистора.


Рисунок 8 - Выходные ВАХ транзистора КТ809А

Построим нагрузочную прямую по постоянному току. Далее имеем

При этом ток в коммутируемой цепи

не зависит от параметра транзистора, а зависит только от параметров внешней цепи (
и
). Для обеспечения режима насыщения и крайнего верхнего положения рабочей точки необходимо в цепь базы транзистора подать соответствующий управляющий сигнал.

Минимальное значение тока базы должно быть не меньше

. В общем случае:

Для реального тока базы

должно выполнятся, условие,
т.е. реальный ток базы больше или равен току насыщения базы. И, как правило, с целью повышения надежности работы транзисторного ключа при различных температурах, а также для удобства замены транзистора в случае выхода из строя, эти величины связывают через степень насыщения S. Но в нашем случае, т.к. мы используем схему на составных транзисторах, то достаточно задаться значением S, только для транзистора VT1, который будем рассчитывать далее. Значит для данного транзистора (VT2) будем иметь
. Теперь из входных характеристик можно определить минимальное напряжение, которое необходимо подать на вход ключа для того, что бы перевести транзистор в режим насыщения.

Рисунок 9 - Входные ВАХ транзистора КТ809А