B (
). мА– допустимое изменение тока в рабочей точке
Параметр
характеризует сопротивление делителя по переменному току:Возьмем
, тогда:Сопротивление в цепи коллектора равно:
Ом, возьмем по ряду номиналов ОмРасчёт на СЧ:
Схема замещения на СЧ:
В эквивалентной схеме каскада на СЧ можно пренебречь емкостями
и .Коэффициент усиления каскада равен:
, Ом.Для получения требуемого коэффициента усиления введем ООС с фактором равным:
где
- сопротивление, вводимое в цепь эмиттера для получения необходимого фактора ООС.Ом по ряду номиналов возьмем
Ом.Введение такого сопротивления в цепь эмиттера только улучшит термостабильность каскада.
Коэффициент усиления каскада при
Ом будет равен:
Расчёт на ВЧ:
Схема замещения на ВЧ:
Частотные искажения на ВЧ обуславливаются падением крутизны транзистора на высоких частотах и влиянием ёмкости Со.
, где - эквивалентная емкость.Емкость С22 находим по формуле:
где Ск – справочный параметр равный: Ск = 30 пФ
Тогда эквивалентная емкость будет равна:
Тогда:
Расчёт на НЧ:
Схема замещения:
Для того, чтобы скомпенсировать завал на НЧ и, самое главное, чтобы уменьшить номиналы конденсаторов Сэ, мы используем НЧ – коррекцию, введя в цепь коллектора элементы Rф и Cф. Расчёт производится для ёмкостей Ср и Сф одновременно. Основным условием применения этого метода коррекции является высокоомность нагрузки каскада с коррекцией. Метод расчёта указан в литературе [3] и заключается в следующем:
Зададимся допустимым падением напряжения на Rф:
Постоянная составляющая тока коллектора равна:
Отсюда находим сопротивление Rф:
Это сопротивление соответствует номинальному ряду сопротивлений.
Найдём b, как соотношение между Rк и Rф:
Далее находим график с системой кривых для значения b = 0,5.
Из этого графика находим такое значение параметра Xн, при котором происходит перекоррекция до уровня Мн=1,45. Этому условию соответствует кривая для параметра m=0,6 и Xн=1,1, где
, аИз этих выражений можно найти значение нужных нам емкостей по формулам:
Таким образом мы получили перекоррекцию в каскаде Мн=1,45.
Расчёт делителя, входных сопротивления и ёмкости:
Проведем расчет делителя напряжения в цепи базы:
по ряду номиналов берем
кОм.по ряду номиналов возьмем
кОм.Проведем проверку:
> А.Входное сопротивление каскада:
, где кОм,Входное сопротивление транзистора в схеме с ОЭ, при введении фактора ОС, в F раз больше входного сопротивления схемы с ОЭ без ООС.
кОмВходная емкость каскада:
1.6 Расчёт первого каскада
Первый каскад, для увеличения входного сопротивления усилителя, а как следствие и увеличения коэффициента передачи по напряжению входной цепи, будет выполнен на полевом транзисторе. Отличие усилительного каскада на ПТ от эмиттерного повторителя (который также имеет высокое входное сопротивление) в том, что коэффициент усиления по напряжению каскада на ПТ больше 1 (реально К=1..5 в зависимости от транзистора). Расчёт каскада на полевом транзисторе несколько отличается от расчёта каскадов на биполярном транзисторе. Это несёт важную методическую функцию - при расчете одного усилителя мы разобрали три различных методики расчета каскадов на полевом/биполярном транзисторах в схемах включения с ОК и ОЭ (ОИ).
Во входном каскаде используем МДП-транзистор со встроенным n-каналом КП313А:
пФ, пФ, В, мА, мВт, мкСм, нА.Найдём крутизну транзистора в рабочей точке
(
мА, В, В) из графиков, представленных в справочнике: мСм.По нагрузочной прямой находим
: Ом.Проведем расчет термостабилизации каскада:
Где:
А – изменение тока утечки затвора от температуры. - допустимое изменение тока стока в рабочей точке. В – сдвиг напряжения между затвором и истоком при изменении температуры. МОм – сопротивление в цепи затвора характеризует входное сопротивление каскада. Ом.Отрицательное значение
означает, что в выбранном режиме транзистор не нуждается в стабилизации.