На рисунке 5.1 приведены три типовые схемы усилителя ОИ, обеспечивающих получение выбранного режима работы на полевых транзисторах разных типов. Чертеж первой схемы является наиболее полным – на ней показаны разделительные конденсаторы, отделяющие по постоянному току каскад от источника сигнала и нагрузки. На последующих разделительные конденсаторы не приведены – вход и выход переменного сигнала показаны стрелками.
Рисунок 5.1. Усилительные каскады ОИ на полевых транзисторах
Наиболее общей является схема рисунка 5.1, б. Ее называют схемой с истоковой стабилизацией. Она подобна схеме рисунка 4.7, где изображен каскад с эмиттерной стабилизацией на биполярном транзисторе. Истоковая стабилизация может быть выполнена независимо от типа примененного полевого транзистора. Для того чтобы избежать уменьшения коэффициента усиления резистор Rи шунтируют конденсатором Си. Величина шунтирующей емкости эмиттерного конденсатора находят из соотношения, аналогичного (4.21):
,(5.1)Режим работы каскада на полевых транзисторах определяется постоянным напряжением между затвором и истоком. Для схемы с истоковой стабилизацией имеем:
,(5.2)где Iд, Iи – токи резистивного делителя и истока транзистора.
В схеме рисунка 5.1, а отсутствует делитель напряжения источника питания (Iд, = 0), поэтому она может быть использована для задания рабочей точки в транзисторах, работа которых возможна при отрицательных напряжениях на затворе. Такое включение называется схемой автоматической подачи смещения. Ее применение наиболее оптимально в каскадах на полевом транзисторе с управляющим р-п переходом.
Вторая схема позволяет получить на затворе как отрицательные (URu » URд2), так и положительные (UR д2 » URu) напряжения. В третьей схеме Rи = 0, соответственно, напряжение на затворе может быть только положительным. Поэтому ее применяют только для МОП (МДП) транзисторов с индуцированным каналом.
Необходимо отметить, что все схемы позволяет обеспечить режим термокомпенсации (см. раздел 2.6). Для этого необходимо подать на затвор напряжение, соответствующее термокомпенсационной точке стокозатворной характеристики (см. рисунок 2.13). К сожалению, такой выбор рабочей точки не всегда возможен т.к зачастую необходимо работа при больших токах стока, чем ток соответствующий термокомпенсации.
Выбор типа полевого транзистора производится на основе тех же требований к его предельно допустимым параметрам, которые были сформулированы в предыдущей главе (выражения (4.10) – (4.13)) применительно к биполярному транзистору.
Для определения основных параметров каскада по переменному току обратимся к его схеме замещения, приведенной на рисунке 5.2, а. Данная схема справедлива для области средних частот. При ее формировании использованы все допущения, что и при составлении схемы усилителя ОЭ рисунка 5.9. Например, учтено соотношение (5.1). Опущены все емкости, которые характеризуют ПТ (см. эквивалентную схему ПТ рисунка 2.13).
Рисунок 5.2. Эквивалентная схема усилителя ОИ для средних частот
Входное сопротивление в основном определяется сопротивлением резисторов, подсоединенных к затвору. Для схемы рисунка 5.1, а Rвх = Rз, для двух остальных
. (5.3)Определим коэффициент усиления каскада по переменному току. Из эквивалентной схемы рисунка 5.2, с учетом того, что Uзи = Uвх, находим
, (5.4) , (5.5)где Кu и Кi – коэффициенты усиления по напряжению и току,
S – крутизна стокозатворной характеристики полевого транзистора;
Rвых – выходное сопротивление усилителя;
(5.6)Как и для усилителя на биполярном транзисторе, для количественной оценки уменьшения усиления используют коэффициент частотных искажений, который на нижних частотах с достаточной точностью можно определить по формуле (4.29). Эквивалентная постоянная времени
; .Также как и для усилителя на биполярном транзисторе, если задан общий коэффициент частотных искажений Мн на весь каскад, то эту величину следует распределить между отдельными искажающими в области низших частот цепями и затем определить необходимые значения емкостей.
Коэффициент частотных искажений в области высших частот на частоте fВ для каскада ОИ можно оценить по формуле:
МВ = 1 + (2 p fВ τв) 2,(5.7)где
;Сз и, Сз с, Сс и – справочное значение межэлектродных емкостей транзистора.
Типовая схемы истокового повторителя приведена на рисунке 5.3, а.
Рисунок 5.3. Истоковый повторитель
Выбор типа транзистора и сопротивления резисторов определяется необходимостью обеспечить требуемый режим работы усилительного каскада. Они выполняются по методикам, изложенным применительно к усилительным каскадам других типов.
Рассмотрим основные параметры каскада по переменному току. В результате обхода по контуру, показанному на рисунке 5.3, а, для переменного сигнала можем записать:
.При выходе последнего выражения пренебрегли падением напряжения части сигнала на разделительной емкости С1р. Из него получаем:
.Для выходного напряжения сигнала
.Откуда
(5.8)Если выполняется условие SRн экв >> 1, то схема работает как повторитель (истоковый) напряжения входного сигнала. Коэффициент усиления будет тем ближе к единице, чем больше крутизна полевого транзистора и больше сопротивление эквивалентной нагрузки. Величина последней определяется выражением:
. (5.9)Коэффициент усиления по току и выходное сопротивление:
(5.10)Входное сопротивление в основном определяется сопротивлением резисторов, подсоединенных к затвору. Для схемы рисунка 5.3, а Rвх = Rз, в случае использования делителя – см. (выражение (5.3)).
[1] Более полное рассмотрение энергетических показателей работы усилителя в разных классах приведено в разделе 9
[2] Выбор системы координат (Uнэ и Iнэ) определяется тем, что для управляемых электронных приборов (например, транзисторов) они соответсвуют их выходным характеристикам, а для неуправляемых – вольт-амперным.
[3] В разделе 2.2 показано, что для низких частот h21Э = b (см. выражение (2.18)), что позволяет использовать любое из этих обозначений.