Первичные реле косвенного действия. В системах электроснабжения эти реле применяются относительно редко. Они, в частности, используются в защите тяговой сети постоянного тока вместе с неполяризованными быстродействующими выключателями. При срабатывании контакты реле размыкают цепь держащей катушки 5 и выключатель отключается. Распространение получило электромагнитное реле РДШ. Оно использует электромеханическую систему с поворотным якорем На полюсах магнитопровода расположены обмотки 2 и 3. Одна из них выполнена токопрово-дом меньшего сечения, обладающим индуктивностью L, благодаря надетым на него пакетам трансформаторной стали. Обмотки соединены параллельно так, что токи /, и /2 наводят в магнитопроводе потоки Ф,,, и Фд, направленные противоположно. В нормальном режиме результирующий магнитный поток Ф = Ф и реле напряжения АГК прямого действия с втягивающимся якорем. Они различаются некоторыми конструктивными деталями и параметрами. Реле устанавливаются непосредственно в пружинные и грузовые приводы выключателей, например ППМ-10, ПП-67, ПРБА, ВМПП, ВК, ВЭ. Их обмотки включаются в цепь через первичные измерительные преобразователи. Это дает возможность расширить область использования реле и частично исключить недостатки, присущие первичным реле.
С помощью вторичных реле прямого действия можно выполнять защиты в установках напряжением до 35 кВ.
Максимальное реле тока с ограниченно зависимой выдержкой времени показано на рис. 8, а. Выдержка времени создается с помощью часового механизма 1 и может устанавливаться в независимой части в пределах до /ср = 4 с рычагом 2, который с помощью пластины 3 связан с установочным винтом 4. Выдержка времени в зависимой части характеристики определяется уставкой реле в независимой части. Для установки тока срабатывания обмотка реле 11 имеет ответвления, выведенные на переключатель б.
Подвижная система реле состоит из сердечника 12 и ударника 10. Ударник жестко связан с часовым механизмом тягой 5. Связь сердечника с ударником, а следовательно, и с часовым механизмом осуществляется пружиной 7, которая одним концом соединена с сердечником, а другим упирается в стопорное кольцо £ ударника. В зависимости оттока в обмотке реле эта связь может быть жесткой или гибкой.
При прохождении по обмотке реле тока, равного или превышающего ток срабатывания, сердечник 12 стремится притянуться к неподвижному полюсу 9, увлекая за собой ударник. При токах, меньших трехкратного тока срабатывания, электромагнитная сила, действующая на сердечник, оказывается меньше противодействующей силы пружины; пружина не сжимается и действует как жесткая связь.
При этом скорости перемещения сердечника и ударника одинаковы и определяются электромагнитной силой и часовым механизмом, поэтому с увеличением тока выдержка времени реле уменьшается, образуя зависимую часть характеристики.
При токах, больших трехкратного тока срабатывания, сердечник мгновенно притягивается к неподвижному полюсу и сжимает пружину. При этом скорость движения ударника вверх не зависит от электромагнитной силы и определяется только часовым механизмом. Реле работает в независимой части характеристики.
По заводским данным, реле РТВ имеет погрешность в выдержке времени Д/ср = ±0,3 с при работе в независимой части характеристики, которая возрастает в два-три раза при работе реле в зависимой части характеристики и при токе срабатывания достигает нескольких секунд. Реле РТВ имеет сравнительно низкий коэффициент возврата, изменяющийся в зависимости от положения сердечника в пределах 0,4 £ кв < 0,8. В расчетах рекомендуется принимать кя = 0,65.
Максимальное реле тока мгновенного действия конструктивно отличается от реле РТВ тем, что не имеет часового механизма. Реле изготовляют на различные токи срабатывания. Например, реле, встроенное в привод выключателя типа ПРБА, позволяет установить ток срабатывания /ср = 5...15 А. Время срабатывания реле РТМ зависит от кратности тока. При кратностях около 2—3 время срабатывания tcр < 0,02 с.
Следует отметить, что как реле РТВ, так и реле РТМ имеют сложную систему установки тока срабатывания. Переключатель витков сложен по своей конструкции и мало надежен в эксплуатации. В связи с этим созданы реле РТМ с обмотками без ответвлений. При этом установка тока срабатывания осуществляется путем аксиального перемещения сердечника специальным винтом. В конструкции реле РТМ Рижского опытного завода Латвэнерго использовались оба способа установки тока срабатывания. Благодаря этому, несмотря на расширенные пределы установки тока срабатывания до /ср < 260 А, максимальная потребляемая мощность не превышает 600 В ■ А. Тем не менее, и данная конструкция не может считаться удовлетворительной, так как большинство трансформаторов тока не обеспечивают такой большой мощности.
Таким образом, конструкция реле РТВ и РТМ нуждается в улучшении. Желательным является снижение погрешностей реле, уменьшение потребляемой мощности и расширение шкалы тока и времени.
Минимальное реле напряжения с ограниченно зависимой выдержкой времени, как и реле РТВ, имеет часовой механизм. В нормальном режиме, когда к обмотке реле подводится номинальное напряжение, реле находится в заведенном состоянии. Его сердечник притянут. При снижении напряжения до Up < 0,65J7HOM сердечник под действием собственного веса начинает опускаться с некоторой выдержкой времени. Его быстрому падению препятствует часовой механизм.
Выдержка времени устанавливается, как и у реле типа РТВ, в пределах 0 < /ср < 4 с. Она позволяет отстраивать защиту от кратковременных снижений напряжения. Однако реле имеет устойчивую выдержку времени лишь при напряжении Up < 0,35£/нотг Недостатками реле являются также отсутствие устройства установки напряжения срабатывания и сравнительно большая потребляемая мощность.
Минимальное реле напряжения мгновенного действия РН не имеет часового механизма, поэтому при срабатывании реле его сердечник перемещается без замедления. У реле РН напряжения срабатывания и возврата не могут изменяться и находятся в пределах £/ср = £/ном и ^ = Ц«».
Вторичные реле тока и напряжения косвенного действия получили большое распространение благодаря следующим достоинствам: эти реле изготовляют для включения в цепь через первичные измерительные преобразователи, поэтому их параметры не зависят от параметров защищаемого элемента, при этом они могут быть выполнены достаточно чувствительными с незначительными погрешностями и относительно малым потреблением мощности при срабатывании; их можно настраивать без отключения элемента системы электроснабжения; реле можно устанавливать в любом удобном для работы и эксплуатации устройства месте; они позволяют создать логическую часть схемы и выполнить в случае необходимости релейную защиту и автоматику любой сложности.
Вместе с тем эти реле имеют недостатки, присущие электромеханическим системам: значительные потребляемые мощности, сравнительно большие размеры, недостаточная надежность из-за наличия подвижной системы и контактов. Кроме того, реле можно использовать только при наличии источников оперативного тока.
Реле тока РТ-40 используют П-образную магнитную систему с поперечным движением якоря. На полюсах магнитопровода 7 расположены две обмотки реле 9, которые можно соединить между собой последовательно или параллельно. Подвижная система реле состоит из Г-образного стального якоря 6, подвижного контакта 2 и механического гасителя вибрации якоря 1.
Положение якоря фиксируется упорами 8. В качестве противодействующей служит спиральная пружина 5, одним концом связанная с осью подвижной системы, а вторым — с указателем уставки 4. Изменяя положение указателя уставки, можно непрерывно изменять натяжение пружины, ее противодействующую силу и ток срабатывания реле. При прохождении тока по обмотке реле электромагнитная сила F3стремится притянуть якорь к полюсам электромагнита, этому препятствует противодействующая сила FM, обусловленная силой пружины F„ и силой трения FrПри токе, равном или большем тока срабатывания, сила F3превышает силу FM, якорь реле 6 поворачивается и связанный с ним подвижной контакт 2 замыкает управляемую электрическую цепь. Подвижная система реле возвращается в начальное положение при токе возврата; коэффициент возврата = 0,8.
При перемещении указателя уставки 4 из начального положения, отмеченного на шкале 3, в конечное ток срабатывания увеличивается в два раза. Шкала отградуирована в амперах для схемы последовательного соединения обмоток реле. Переключение обмоток реле с последовательного соединения на параллельное увеличивает токи срабатывания, указанные на шкале 3, в два раза. Потребляемая мощность реле разной чувствительности при минимальной уставке находится в пределах Р^р= 0.2...8 В - А.
Прохождение по обмотке реле несинусоидальных токов, возникающих, например, вследствие насыщения трансформаторов тока при коротком замыкании, приводит к усиленной вибрации подвижной системы реле и его отказу. Для снижения вибрации у реле тока наряду с механическим гасителем применяется магнитопровод с насыщающимися участками, которые делаются суженными.
Реле напряжения РН-50 по конструкции мало отличается от реле РТ-40. Обмотки реле напряжения включаются в схему через двух-полупериодный выпрямитель, в цепь которого вводится один или два добавочных резистора. Выпрямленный ток имеет пульсирующий характер, однако индуктивность обмотки реле уменьшает пульсацию тока и электромагнитной силы, поэтому вибрация якоря практически отсутствует. В отличие от реле тока реле напряжения не имеет механического гасителя вибрации якоря. Шкала реле проградиурована при включении одного резистора. Чтобы получить шкалу уставок, вдвое большую, необходимо включить оба резистора. Потребляемая мощность для всех реле Ptp < 5 В - А.