Смекни!
smekni.com

Вейвлет-перетворення (стр. 2 из 3)

Часова інформація при ПФвідсутня. При ВПФ вікно має кінцеву довжину, накриває тільки частину сигналу, тому частотне розрізнювання погіршується. Отже, чим вужче вікно, тим краще часоверозрізнювання, але гірше частотне. І навпаки. Крім того, чим вужче вікно, тим більш справедливими стають наші припущення про стаціонарність сигналу в межах вікна.

Для того, щоб спостерігати ці ефекти, звернемося до прикладів. Розглянемочотири вікна різної ширини. Як віконну функціювикористовуватимемо функцію Гауса, що має вигляд:

,

де a визначає ширину вікна, а t – час. На рис. 8 показані чотири вікна різної ширини, обумовленої значенням a.

Розглянутий раніше приклад був розрахований при значенні a=0.001. Тепер розглянемо ВПФ тих самих сигналів при іншому значенні ширини вікна.

Рисунок 8 – Чотири вікна різної ширини

Рисунок 9 – ВПФ при вузькому значенні ширини вікна


Для початку використаємо перше, найвужче вікно. Ми можемо очікувати добре розрізнювання за часом, але погане за частотою (рис. 9). Зазначимо, що чотири піки, показані на рисунку, добре розділені за часом. Також зазначимо, що в частотній областікожен пік накриває діапазон частот, а не одну якусь частоту. Тепер збільшимо ширину вікна й подивимося на наступний рисунок 10.

Рисунок 10 – ВПФ при збільшеному широкому значенні ширини вікна

Як видно з рисунка, піки тепер не настільки добре розділені за часом.

Однак частотне розрізнювання покращилось. Збільшимо ще ширину вікна (рис. 11):

Рисунок 11 – ВПФ при широкому значенні ширини вікна


Як і очікувалося, часоверозрізнювання значно погіршилося.

Наведені приклади показали проблему розрізнювання, властиву ВПФ. Тому при застосуванні ВПФ завжди виникають питання: який вид вікна використати? Вузьке вікно забезпечує краще часоверозрізнювання, а широке – краще частотне. Проблема полягає в тому, що доводиться вибирати вікно «раз і назавжди», тобто для аналізу всього сигналу, тоді як різні його відрізки можуть вимагати застосування різних вікон. Якщо сигнал складається з далеко віддалених один від одного частотних компонентів, то можна пожертвувати спектральним розрізнюванням на користь часового й навпаки.

Вейвлет-перетворення вирішує якоюсь мірою цю проблему розрізнювання.

2. Ідея вейвлет-перетворень

Вейвлет-перетворення (ВП) відноситься саме до цього типу перетворень. Воно забезпечує частотно-часове подання сигналів. (Існують й інші перетворення сигналів, які також виконують це завдання, такі як віконнеПФ (ВПФ), перетворення Вігнера та ін.) ВП було розроблено до певної міри як альтернатива ВПФ. ВП було розроблено для подолання деяких проблем ВПФ, пов'язаних з поганим розрізнюванням.

Пропустимо сигнал через два фільтри – низькочастотні й високочастотний (фільтри з'єднані паралельно). Повторимо цю процедуру для виходу низькочастотного фільтра, залишивши вихід високочастотного фільтра незмінним. Так, якщо вихідний сигнал містив частоти до 1000Гц, то після першого етапу одержимодва сигнали 0-500Гц та 500-1000Гц, після другого етапу – три сигнали 0-250Гц, 250-500Гц та 500-1000Гц. тощо. Ця операція називається декомпозицією. Декомпозиція триває якусь кількість разів.

В остаточному підсумку, ми одержуємобезлічсубсигналів, що являє наш вихідний сигнал. Коженсубсигнал відповідає певнійсубсмузі частот. Можна побудувати тривимірний графік, відклавши по одній осі час, по другий – частоту й по третій – амплітуду. Таким чином, ми можемо побачити, які частоти присутні в кожному окремому інтервалі часу. Ми можемо лише говорити про інтервал часу та про частотну смугу, що спостерігається в ньому. ВПФ дає фіксоване розрізнювання на всіх частотах, тоді як при ВПрозрізнювання змінюється: на високих частотах краще розрізнювання за часом, а на низьких – за частотою. Це означає, що для високочастотного компоненти ми можемо точніше вказати її часову позицію, а для низькочастотної – її значення частоти. Розглянемо такий графік (рис. 12):

Рисунок 12 – Фазова плоскість ВП

Цей графік можна інтерпретувати в такий спосіб. Верхній рядок показує, що на високих частотах ми маємо в розпорядженні більше відліків, що відповідає меншим інтервалам часу. Нижній рядок відповідає низькочастотній компоненті, і ми бачимо, що в ній міститься менше точок. Отже, тимчасоверозрізнювання для низькочастотних компонент сигналу гірше.

У випадку дискретного часу розрізнювання за часом поводиться так, як і у попередньому випадку. Однак тепер і розрізнювання за частотою змінюється від рівня до рівня. На низьких частотах краще розрізнювання за частотою, ніж на високих частотах. Відзначимо також збільшення відстані між частотними точками із збільшенням частоти (рис. 13).


Рисунок 13 – Фазова площина ДВП

Нижче наведено приклад безперервногоВП (рис. 15). Нехай сигнал складається з двох синусоїд, які існують у різний час: спочатку в сигналі присутня НЧ синусоїда, потім – ВЧ рис. 14.

Рисунок 14 – Сигнал, який складається з двох синусоїд різної частоти

Рисунок 15 – БезперервнеВП сигналу, що складається з двох синусоїд


Відзначте, що замість осі частот на цих графіках позначена вісь масштабу. Концепція масштабу стане більшзрозумілою з пояснення наступних розділів. Поки ж зазначимо лише, що масштаб є поняттям, зворотнім частоті. Тобто високі шкали відповідають низьким частотам, а низькі – високим. Отже, малий пік на графіку відповідає ВЧкомпоненті сигналу, а великий пік – НЧкомпоненті.

Загальноприйнятим підходом до аналізу сигналів

стало їхнє подання у вигляді зваженої суми простих складових – базисних функцій
, помножених на коефіцієнти
.

.

Оскільки базисні функції

вважаються заданими як функції цілком певноговиду, то коефіцієнти
містять інформацію про певний сигнал. Отже, можна говорити про можливості подання довільних сигналів на основі рядів з різними базисними функціями. Досить грубо можна представити вейвлети як деякі хвильові функції, здатні здійснювати перетворення Фур'є не по всій часовій осі, а локально за місцемрозташування.

Базисними функціями вейвлетів можуть бути різні функції, у тому числі такі, які близько й віддалено нагадують модульовані імпульсами синусоїди, функції зі стрибками рівня і т.д. Це забезпечує легке подання сигналів з локальними стрибками й розривами і відкриває простір у підборі найбільш підходящихвейвлетів,виходячи з умов завдань, які необхідно розв’зати. На жаль, часто вейвлети не мають аналітичного подання у вигляді однієї формули, але можуть задаватися ітераційними виразами, що легко обчислюються за допомогою комп’ютерів.

Вейвлети характеризуються своїм часовим і частотним способом. Часовий спосіб визначається деякою psi-функцією

часу. А частотний спосіб визначається її Фур'є-способом
, що задає огинаючу спектра вейвлета. Фур'є-спосіб визначаєтьсявиразом:

.

Кількість використаних під час розкладання сигналу вейвлетів задає рівень декомпозиції сигналу. При цьому за нульовий рівень декомпозиції, як правило, приймають сам сигнал, а наступні рівні декомпозиції утворюють зазвичай спадаюче вейвлет–дерево.

Пряме вейвлет–перетворення (ПВП), назване також безперервним, означає розкладання довільного вхідного сигналу на принципово новий базис у вигляді сукупності хвильових пакетів–вейвлетів, які характеризуються чотирма принципово важливими властивостями:

· мають вигляд коротких, локалізованих у часі (або в просторі) пакетів з нульовим значенням інтегралу;

· мають можливість зміщення в часі;

· здатні до масштабування (стиснення/розтягання);

· мають обмежений (або локальний) частотний спектр.

3. Безперервне вейвлет-перетворення

Безперервний вейвлет-аналіз (БВП) виконується аналогічно ВПФ, у тому розумінні, що сигнал перемножується з функцією (вейвлетом), так само, як і з віконною функцією при ВПФ. Однак існує дві істотні різниці між ВПФ і БВП:

1. Не виконується ПФзваженогозвейвлетом сигналу.

2. Ширина вікна змінюється.

Безперервне вейвлет-перетворення визначається в такий спосіб:


, 1

Як видно з рівності, перетворений сигнал є функцією двохзмінних,

і s, параметри зміщення і масштабу, відповідно.
(t) – функція перетворення, що називається материнськимвейвлетом.